{"title":"利用CRISPR/Cas9对秀丽隐杆线虫进行靶向基因组编辑。","authors":"Behnom Farboud","doi":"10.1002/wdev.287","DOIUrl":null,"url":null,"abstract":"<p><p>Utilization of programmable nucleases to generate DNA lesions at precise endogenous sequences has transformed the ability to edit genomes from microbes to plants and animals. This is especially true in organisms that previously lacked the means to engineer precise genomic changes, like Caenorhabditis elegans. C. elegans is a 1 mm long free-living, nonparasitic, nematode worm, which is easily cultivated in a laboratory. Its detailed genetic map and relatively compact genome (~100 megabases) helped make it the first metazoan to have its entire genome sequenced. With detailed sequence information came development of numerous molecular tools to dissect gene function. Initially absent from this toolbox, however, were methods to make precise edits at chosen endogenous loci. Adapting site-specific nucleases for use in C. elegans, revolutionized studies of C. elegans biology. Zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and then CRISPR-associated protein 9 (Cas9) were used to target specific endogenous DNA sequences to make double-strand DNA breaks (DSBs). Precise changes could be engineered by providing repair templates targeting the DSB in trans. The ease of programming Cas9 to bind and cleave DNA sequences with few limitations has led to its widespread use in C. elegans research and sped the development of strategies to facilitate mutant recovery. Numerous innovative CRISPR/Cas9 methodologies are now primed for use in C. elegans. WIREs Dev Biol 2017, 6:e287. doi: 10.1002/wdev.287 For further resources related to this article, please visit the WIREs website.</p>","PeriodicalId":23630,"journal":{"name":"Wiley Interdisciplinary Reviews: Developmental Biology","volume":"6 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/wdev.287","citationCount":"16","resultStr":"{\"title\":\"Targeted genome editing in Caenorhabditis elegans using CRISPR/Cas9.\",\"authors\":\"Behnom Farboud\",\"doi\":\"10.1002/wdev.287\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Utilization of programmable nucleases to generate DNA lesions at precise endogenous sequences has transformed the ability to edit genomes from microbes to plants and animals. This is especially true in organisms that previously lacked the means to engineer precise genomic changes, like Caenorhabditis elegans. C. elegans is a 1 mm long free-living, nonparasitic, nematode worm, which is easily cultivated in a laboratory. Its detailed genetic map and relatively compact genome (~100 megabases) helped make it the first metazoan to have its entire genome sequenced. With detailed sequence information came development of numerous molecular tools to dissect gene function. Initially absent from this toolbox, however, were methods to make precise edits at chosen endogenous loci. Adapting site-specific nucleases for use in C. elegans, revolutionized studies of C. elegans biology. Zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and then CRISPR-associated protein 9 (Cas9) were used to target specific endogenous DNA sequences to make double-strand DNA breaks (DSBs). Precise changes could be engineered by providing repair templates targeting the DSB in trans. The ease of programming Cas9 to bind and cleave DNA sequences with few limitations has led to its widespread use in C. elegans research and sped the development of strategies to facilitate mutant recovery. Numerous innovative CRISPR/Cas9 methodologies are now primed for use in C. elegans. WIREs Dev Biol 2017, 6:e287. doi: 10.1002/wdev.287 For further resources related to this article, please visit the WIREs website.</p>\",\"PeriodicalId\":23630,\"journal\":{\"name\":\"Wiley Interdisciplinary Reviews: Developmental Biology\",\"volume\":\"6 6\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/wdev.287\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wiley Interdisciplinary Reviews: Developmental Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/wdev.287\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2017/8/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews: Developmental Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/wdev.287","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/8/15 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Targeted genome editing in Caenorhabditis elegans using CRISPR/Cas9.
Utilization of programmable nucleases to generate DNA lesions at precise endogenous sequences has transformed the ability to edit genomes from microbes to plants and animals. This is especially true in organisms that previously lacked the means to engineer precise genomic changes, like Caenorhabditis elegans. C. elegans is a 1 mm long free-living, nonparasitic, nematode worm, which is easily cultivated in a laboratory. Its detailed genetic map and relatively compact genome (~100 megabases) helped make it the first metazoan to have its entire genome sequenced. With detailed sequence information came development of numerous molecular tools to dissect gene function. Initially absent from this toolbox, however, were methods to make precise edits at chosen endogenous loci. Adapting site-specific nucleases for use in C. elegans, revolutionized studies of C. elegans biology. Zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and then CRISPR-associated protein 9 (Cas9) were used to target specific endogenous DNA sequences to make double-strand DNA breaks (DSBs). Precise changes could be engineered by providing repair templates targeting the DSB in trans. The ease of programming Cas9 to bind and cleave DNA sequences with few limitations has led to its widespread use in C. elegans research and sped the development of strategies to facilitate mutant recovery. Numerous innovative CRISPR/Cas9 methodologies are now primed for use in C. elegans. WIREs Dev Biol 2017, 6:e287. doi: 10.1002/wdev.287 For further resources related to this article, please visit the WIREs website.
期刊介绍:
Developmental biology is concerned with the fundamental question of how a single cell, the fertilized egg, ultimately produces a complex, fully patterned adult organism. This problem is studied on many different biological levels, from the molecular to the organismal. Developed in association with the Society for Developmental Biology, WIREs Developmental Biology will provide a unique interdisciplinary forum dedicated to fostering excellence in research and education and communicating key advances in this important field. The collaborative and integrative ethos of the WIREs model will facilitate connections to related disciplines such as genetics, systems biology, bioengineering, and psychology.
The topical coverage of WIREs Developmental Biology includes: Establishment of Spatial and Temporal Patterns; Gene Expression and Transcriptional Hierarchies; Signaling Pathways; Early Embryonic Development; Invertebrate Organogenesis; Vertebrate Organogenesis; Nervous System Development; Birth Defects; Adult Stem Cells, Tissue Renewal and Regeneration; Cell Types and Issues Specific to Plants; Comparative Development and Evolution; and Technologies.