疫苗诱导抗体对乙型和丙型脑膜炎奈瑟菌在人支气管上皮细胞培养模型中定植的影响

Q2 Biochemistry, Genetics and Molecular Biology
Clinical and Vaccine Immunology Pub Date : 2017-10-05 Print Date: 2017-10-01 DOI:10.1128/CVI.00188-17
Vianca Vianzon, Beate Illek, Gregory R Moe
{"title":"疫苗诱导抗体对乙型和丙型脑膜炎奈瑟菌在人支气管上皮细胞培养模型中定植的影响","authors":"Vianca Vianzon,&nbsp;Beate Illek,&nbsp;Gregory R Moe","doi":"10.1128/CVI.00188-17","DOIUrl":null,"url":null,"abstract":"<p><p>Capsular polysaccharide-protein conjugate vaccines protect individuals from invasive disease and decrease carriage, which reduces spread of the organism in the population. In contrast, antibodies elicited by plain polysaccharide or protein antigen-based meningococcal (Men) vaccines have little or no effect on decreasing carriage. In this study, we investigated the mechanism by which vaccine-induced human immunoglobulin G (IgG) antibodies affect colonization by meningococcal serogroup B (MenB) or C (MenC) strains using a human bronchial epithelial cell culture model (16HBE14o-). Fluorescence microscopy showed that bacteria colonizing the apical side of 16HBE14o- monolayers had decreased capsular polysaccharide on the bacterial surface that resulted from shedding the capsule and not decreased production of polysaccharide. Capsular polysaccharide shedding depended on the presence of 16HBE14o- cells and bacteria but not direct adherence of the bacteria to the cells. Treatment of bacteria and cells with postimmunization MenC-conjugate IgG or murine anti-MenB polysaccharide monoclonal antibodies (MAbs) inhibited capsule shedding, microcolony dispersal, and invasion of the 16HBE14o- cell monolayer. In contrast, the IgG responses elicited by immunization with MenC polysaccharide (PS), MenB outer membrane vesicle (OMV)-based, or factor H binding protein (FHbp)-based vaccines were not different than preimmune IgG or no-treatment response. The results provide new insights on the mechanism by which high-avidity anticapsular antibodies elicited by polysaccharide-conjugate vaccines affect meningococcal colonization. The data also suggest that any effect on colonization by IgG elicited by OMV- or FHbp-based vaccines may involve a different mechanism.</p>","PeriodicalId":10271,"journal":{"name":"Clinical and Vaccine Immunology","volume":"24 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1128/CVI.00188-17","citationCount":"7","resultStr":"{\"title\":\"Effect of Vaccine-Elicited Antibodies on Colonization of Neisseria meningitidis Serogroup B and C Strains in a Human Bronchial Epithelial Cell Culture Model.\",\"authors\":\"Vianca Vianzon,&nbsp;Beate Illek,&nbsp;Gregory R Moe\",\"doi\":\"10.1128/CVI.00188-17\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Capsular polysaccharide-protein conjugate vaccines protect individuals from invasive disease and decrease carriage, which reduces spread of the organism in the population. In contrast, antibodies elicited by plain polysaccharide or protein antigen-based meningococcal (Men) vaccines have little or no effect on decreasing carriage. In this study, we investigated the mechanism by which vaccine-induced human immunoglobulin G (IgG) antibodies affect colonization by meningococcal serogroup B (MenB) or C (MenC) strains using a human bronchial epithelial cell culture model (16HBE14o-). Fluorescence microscopy showed that bacteria colonizing the apical side of 16HBE14o- monolayers had decreased capsular polysaccharide on the bacterial surface that resulted from shedding the capsule and not decreased production of polysaccharide. Capsular polysaccharide shedding depended on the presence of 16HBE14o- cells and bacteria but not direct adherence of the bacteria to the cells. Treatment of bacteria and cells with postimmunization MenC-conjugate IgG or murine anti-MenB polysaccharide monoclonal antibodies (MAbs) inhibited capsule shedding, microcolony dispersal, and invasion of the 16HBE14o- cell monolayer. In contrast, the IgG responses elicited by immunization with MenC polysaccharide (PS), MenB outer membrane vesicle (OMV)-based, or factor H binding protein (FHbp)-based vaccines were not different than preimmune IgG or no-treatment response. The results provide new insights on the mechanism by which high-avidity anticapsular antibodies elicited by polysaccharide-conjugate vaccines affect meningococcal colonization. The data also suggest that any effect on colonization by IgG elicited by OMV- or FHbp-based vaccines may involve a different mechanism.</p>\",\"PeriodicalId\":10271,\"journal\":{\"name\":\"Clinical and Vaccine Immunology\",\"volume\":\"24 10\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1128/CVI.00188-17\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical and Vaccine Immunology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1128/CVI.00188-17\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2017/10/1 0:00:00\",\"PubModel\":\"Print\",\"JCR\":\"Q2\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical and Vaccine Immunology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1128/CVI.00188-17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/10/1 0:00:00","PubModel":"Print","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 7

摘要

荚膜多糖蛋白结合疫苗保护个体免受侵袭性疾病的侵袭,减少携带,从而减少生物体在人群中的传播。相比之下,由普通多糖或蛋白抗原为基础的脑膜炎球菌(Men)疫苗引发的抗体对减少携带作用很小或没有作用。在这项研究中,我们利用人支气管上皮细胞培养模型(16HBE14o-)研究了疫苗诱导的人免疫球蛋白G (IgG)抗体影响脑膜炎球菌血清B (MenB)或C (MenC)菌株定植的机制。荧光显微镜显示,细菌定殖在16HBE14o-单分子膜的顶端侧,细菌表面的荚膜多糖减少,这是由于荚膜脱落造成的,而不是多糖的产量减少。荚膜多糖的脱落取决于16HBE14o-细胞和细菌的存在,而不是细菌对细胞的直接粘附。用刺激后的menc偶联IgG或小鼠抗menb多糖单克隆抗体(mab)处理细菌和细胞,可抑制胶囊脱落、微菌落扩散和16HBE14o-细胞单层的侵袭。相比之下,以MenC多糖(PS)、MenB外膜囊泡(OMV)或因子H结合蛋白(FHbp)为基础的疫苗免疫引起的IgG应答与免疫前IgG应答或未处理应答没有区别。这些结果为多糖结合疫苗引发的高亲和力抗囊抗体影响脑膜炎球菌定植的机制提供了新的见解。数据还表明,基于OMV或fhbp的疫苗对IgG定殖的任何影响可能涉及不同的机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Effect of Vaccine-Elicited Antibodies on Colonization of Neisseria meningitidis Serogroup B and C Strains in a Human Bronchial Epithelial Cell Culture Model.

Effect of Vaccine-Elicited Antibodies on Colonization of Neisseria meningitidis Serogroup B and C Strains in a Human Bronchial Epithelial Cell Culture Model.

Effect of Vaccine-Elicited Antibodies on Colonization of Neisseria meningitidis Serogroup B and C Strains in a Human Bronchial Epithelial Cell Culture Model.

Effect of Vaccine-Elicited Antibodies on Colonization of Neisseria meningitidis Serogroup B and C Strains in a Human Bronchial Epithelial Cell Culture Model.

Capsular polysaccharide-protein conjugate vaccines protect individuals from invasive disease and decrease carriage, which reduces spread of the organism in the population. In contrast, antibodies elicited by plain polysaccharide or protein antigen-based meningococcal (Men) vaccines have little or no effect on decreasing carriage. In this study, we investigated the mechanism by which vaccine-induced human immunoglobulin G (IgG) antibodies affect colonization by meningococcal serogroup B (MenB) or C (MenC) strains using a human bronchial epithelial cell culture model (16HBE14o-). Fluorescence microscopy showed that bacteria colonizing the apical side of 16HBE14o- monolayers had decreased capsular polysaccharide on the bacterial surface that resulted from shedding the capsule and not decreased production of polysaccharide. Capsular polysaccharide shedding depended on the presence of 16HBE14o- cells and bacteria but not direct adherence of the bacteria to the cells. Treatment of bacteria and cells with postimmunization MenC-conjugate IgG or murine anti-MenB polysaccharide monoclonal antibodies (MAbs) inhibited capsule shedding, microcolony dispersal, and invasion of the 16HBE14o- cell monolayer. In contrast, the IgG responses elicited by immunization with MenC polysaccharide (PS), MenB outer membrane vesicle (OMV)-based, or factor H binding protein (FHbp)-based vaccines were not different than preimmune IgG or no-treatment response. The results provide new insights on the mechanism by which high-avidity anticapsular antibodies elicited by polysaccharide-conjugate vaccines affect meningococcal colonization. The data also suggest that any effect on colonization by IgG elicited by OMV- or FHbp-based vaccines may involve a different mechanism.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Clinical and Vaccine Immunology
Clinical and Vaccine Immunology 医学-传染病学
CiteScore
2.88
自引率
0.00%
发文量
0
审稿时长
1.5 months
期刊介绍: Cessation. First launched as Clinical and Diagnostic Laboratory Immunology (CDLI) in 1994, CVI published articles that enhanced the understanding of the immune response in health and disease and after vaccination by showcasing discoveries in clinical, laboratory, and vaccine immunology. CVI was committed to advancing all aspects of vaccine research and immunization, including discovery of new vaccine antigens and vaccine design, development and evaluation of vaccines in animal models and in humans, characterization of immune responses and mechanisms of vaccine action, controlled challenge studies to assess vaccine efficacy, study of vaccine vectors, adjuvants, and immunomodulators, immune correlates of protection, and clinical trials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信