{"title":"疫苗诱导抗体对乙型和丙型脑膜炎奈瑟菌在人支气管上皮细胞培养模型中定植的影响","authors":"Vianca Vianzon, Beate Illek, Gregory R Moe","doi":"10.1128/CVI.00188-17","DOIUrl":null,"url":null,"abstract":"<p><p>Capsular polysaccharide-protein conjugate vaccines protect individuals from invasive disease and decrease carriage, which reduces spread of the organism in the population. In contrast, antibodies elicited by plain polysaccharide or protein antigen-based meningococcal (Men) vaccines have little or no effect on decreasing carriage. In this study, we investigated the mechanism by which vaccine-induced human immunoglobulin G (IgG) antibodies affect colonization by meningococcal serogroup B (MenB) or C (MenC) strains using a human bronchial epithelial cell culture model (16HBE14o-). Fluorescence microscopy showed that bacteria colonizing the apical side of 16HBE14o- monolayers had decreased capsular polysaccharide on the bacterial surface that resulted from shedding the capsule and not decreased production of polysaccharide. Capsular polysaccharide shedding depended on the presence of 16HBE14o- cells and bacteria but not direct adherence of the bacteria to the cells. Treatment of bacteria and cells with postimmunization MenC-conjugate IgG or murine anti-MenB polysaccharide monoclonal antibodies (MAbs) inhibited capsule shedding, microcolony dispersal, and invasion of the 16HBE14o- cell monolayer. In contrast, the IgG responses elicited by immunization with MenC polysaccharide (PS), MenB outer membrane vesicle (OMV)-based, or factor H binding protein (FHbp)-based vaccines were not different than preimmune IgG or no-treatment response. The results provide new insights on the mechanism by which high-avidity anticapsular antibodies elicited by polysaccharide-conjugate vaccines affect meningococcal colonization. The data also suggest that any effect on colonization by IgG elicited by OMV- or FHbp-based vaccines may involve a different mechanism.</p>","PeriodicalId":10271,"journal":{"name":"Clinical and Vaccine Immunology","volume":"24 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1128/CVI.00188-17","citationCount":"7","resultStr":"{\"title\":\"Effect of Vaccine-Elicited Antibodies on Colonization of Neisseria meningitidis Serogroup B and C Strains in a Human Bronchial Epithelial Cell Culture Model.\",\"authors\":\"Vianca Vianzon, Beate Illek, Gregory R Moe\",\"doi\":\"10.1128/CVI.00188-17\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Capsular polysaccharide-protein conjugate vaccines protect individuals from invasive disease and decrease carriage, which reduces spread of the organism in the population. In contrast, antibodies elicited by plain polysaccharide or protein antigen-based meningococcal (Men) vaccines have little or no effect on decreasing carriage. In this study, we investigated the mechanism by which vaccine-induced human immunoglobulin G (IgG) antibodies affect colonization by meningococcal serogroup B (MenB) or C (MenC) strains using a human bronchial epithelial cell culture model (16HBE14o-). Fluorescence microscopy showed that bacteria colonizing the apical side of 16HBE14o- monolayers had decreased capsular polysaccharide on the bacterial surface that resulted from shedding the capsule and not decreased production of polysaccharide. Capsular polysaccharide shedding depended on the presence of 16HBE14o- cells and bacteria but not direct adherence of the bacteria to the cells. Treatment of bacteria and cells with postimmunization MenC-conjugate IgG or murine anti-MenB polysaccharide monoclonal antibodies (MAbs) inhibited capsule shedding, microcolony dispersal, and invasion of the 16HBE14o- cell monolayer. In contrast, the IgG responses elicited by immunization with MenC polysaccharide (PS), MenB outer membrane vesicle (OMV)-based, or factor H binding protein (FHbp)-based vaccines were not different than preimmune IgG or no-treatment response. The results provide new insights on the mechanism by which high-avidity anticapsular antibodies elicited by polysaccharide-conjugate vaccines affect meningococcal colonization. The data also suggest that any effect on colonization by IgG elicited by OMV- or FHbp-based vaccines may involve a different mechanism.</p>\",\"PeriodicalId\":10271,\"journal\":{\"name\":\"Clinical and Vaccine Immunology\",\"volume\":\"24 10\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1128/CVI.00188-17\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical and Vaccine Immunology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1128/CVI.00188-17\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2017/10/1 0:00:00\",\"PubModel\":\"Print\",\"JCR\":\"Q2\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical and Vaccine Immunology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1128/CVI.00188-17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/10/1 0:00:00","PubModel":"Print","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Effect of Vaccine-Elicited Antibodies on Colonization of Neisseria meningitidis Serogroup B and C Strains in a Human Bronchial Epithelial Cell Culture Model.
Capsular polysaccharide-protein conjugate vaccines protect individuals from invasive disease and decrease carriage, which reduces spread of the organism in the population. In contrast, antibodies elicited by plain polysaccharide or protein antigen-based meningococcal (Men) vaccines have little or no effect on decreasing carriage. In this study, we investigated the mechanism by which vaccine-induced human immunoglobulin G (IgG) antibodies affect colonization by meningococcal serogroup B (MenB) or C (MenC) strains using a human bronchial epithelial cell culture model (16HBE14o-). Fluorescence microscopy showed that bacteria colonizing the apical side of 16HBE14o- monolayers had decreased capsular polysaccharide on the bacterial surface that resulted from shedding the capsule and not decreased production of polysaccharide. Capsular polysaccharide shedding depended on the presence of 16HBE14o- cells and bacteria but not direct adherence of the bacteria to the cells. Treatment of bacteria and cells with postimmunization MenC-conjugate IgG or murine anti-MenB polysaccharide monoclonal antibodies (MAbs) inhibited capsule shedding, microcolony dispersal, and invasion of the 16HBE14o- cell monolayer. In contrast, the IgG responses elicited by immunization with MenC polysaccharide (PS), MenB outer membrane vesicle (OMV)-based, or factor H binding protein (FHbp)-based vaccines were not different than preimmune IgG or no-treatment response. The results provide new insights on the mechanism by which high-avidity anticapsular antibodies elicited by polysaccharide-conjugate vaccines affect meningococcal colonization. The data also suggest that any effect on colonization by IgG elicited by OMV- or FHbp-based vaccines may involve a different mechanism.
期刊介绍:
Cessation. First launched as Clinical and Diagnostic Laboratory Immunology (CDLI) in 1994, CVI published articles that enhanced the understanding of the immune response in health and disease and after vaccination by showcasing discoveries in clinical, laboratory, and vaccine immunology. CVI was committed to advancing all aspects of vaccine research and immunization, including discovery of new vaccine antigens and vaccine design, development and evaluation of vaccines in animal models and in humans, characterization of immune responses and mechanisms of vaccine action, controlled challenge studies to assess vaccine efficacy, study of vaccine vectors, adjuvants, and immunomodulators, immune correlates of protection, and clinical trials.