Brett N Archer, Cathie Hallahan, Priscilla Stanley, Kathy Seward, Margaret Lesjak, Kirsty Hope, Anthony Brown
{"title":"影响新南威尔士州偏远农村小镇低风险居民的非典型Q热暴发。","authors":"Brett N Archer, Cathie Hallahan, Priscilla Stanley, Kathy Seward, Margaret Lesjak, Kirsty Hope, Anthony Brown","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>We investigated an outbreak of Q fever in a remote rural town in New South Wales, Australia. Cases identified through active and passive case finding activities, and retrospective laboratory record review were interviewed using a standard questionnaire. Two sets of case-case analyses were completed to generate hypotheses regarding clinical, epidemiological and exposure risk factors associated with infection during the outbreak. Laboratory-confirmed outbreak cases (n=14) were compared with an excluded case group (n=16) and a group of historic Q fever cases from the region (n=106). In comparison with the historic case group, outbreak cases were significantly more likely to be female (43% vs. 18% males, P = 0.04) and identify as Aboriginal (29% vs. 7% non-Aboriginal, P = 0.03). Similarly, very few cases worked in high-risk occupations (21% vs. 84%, P < 0.01). Most outbreak cases (64%) reported no high-risk exposure activities in the month prior to onset. In comparison with the excluded case group, a significantly increased proportion of outbreak cases had contact with dogs (100% vs. 63%, P = 0.02) or sighted kangaroos on their residential property (100% vs. 60%, P = 0.02). High rates of tick exposure (92%) were also reported, although this was not significantly different from the excluded case group. While a source of this outbreak could not be confirmed, our findings suggest infections likely occurred via inhalation of aerosols or dust contaminated by Coxiella burnetii, dispersed through the town from either an unidentified animal facility or from excreta of native wildlife or feral animals. Alternatively transmission may have occurred via companion animals or tick vectors.</p>","PeriodicalId":51669,"journal":{"name":"Communicable Diseases Intelligence","volume":"41 2","pages":"E125-E133"},"PeriodicalIF":1.6000,"publicationDate":"2017-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Atypical outbreak of Q fever affecting low-risk residents of a remote rural town in New South Wales.\",\"authors\":\"Brett N Archer, Cathie Hallahan, Priscilla Stanley, Kathy Seward, Margaret Lesjak, Kirsty Hope, Anthony Brown\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We investigated an outbreak of Q fever in a remote rural town in New South Wales, Australia. Cases identified through active and passive case finding activities, and retrospective laboratory record review were interviewed using a standard questionnaire. Two sets of case-case analyses were completed to generate hypotheses regarding clinical, epidemiological and exposure risk factors associated with infection during the outbreak. Laboratory-confirmed outbreak cases (n=14) were compared with an excluded case group (n=16) and a group of historic Q fever cases from the region (n=106). In comparison with the historic case group, outbreak cases were significantly more likely to be female (43% vs. 18% males, P = 0.04) and identify as Aboriginal (29% vs. 7% non-Aboriginal, P = 0.03). Similarly, very few cases worked in high-risk occupations (21% vs. 84%, P < 0.01). Most outbreak cases (64%) reported no high-risk exposure activities in the month prior to onset. In comparison with the excluded case group, a significantly increased proportion of outbreak cases had contact with dogs (100% vs. 63%, P = 0.02) or sighted kangaroos on their residential property (100% vs. 60%, P = 0.02). High rates of tick exposure (92%) were also reported, although this was not significantly different from the excluded case group. While a source of this outbreak could not be confirmed, our findings suggest infections likely occurred via inhalation of aerosols or dust contaminated by Coxiella burnetii, dispersed through the town from either an unidentified animal facility or from excreta of native wildlife or feral animals. Alternatively transmission may have occurred via companion animals or tick vectors.</p>\",\"PeriodicalId\":51669,\"journal\":{\"name\":\"Communicable Diseases Intelligence\",\"volume\":\"41 2\",\"pages\":\"E125-E133\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2017-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communicable Diseases Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"INFECTIOUS DISEASES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communicable Diseases Intelligence","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
Atypical outbreak of Q fever affecting low-risk residents of a remote rural town in New South Wales.
We investigated an outbreak of Q fever in a remote rural town in New South Wales, Australia. Cases identified through active and passive case finding activities, and retrospective laboratory record review were interviewed using a standard questionnaire. Two sets of case-case analyses were completed to generate hypotheses regarding clinical, epidemiological and exposure risk factors associated with infection during the outbreak. Laboratory-confirmed outbreak cases (n=14) were compared with an excluded case group (n=16) and a group of historic Q fever cases from the region (n=106). In comparison with the historic case group, outbreak cases were significantly more likely to be female (43% vs. 18% males, P = 0.04) and identify as Aboriginal (29% vs. 7% non-Aboriginal, P = 0.03). Similarly, very few cases worked in high-risk occupations (21% vs. 84%, P < 0.01). Most outbreak cases (64%) reported no high-risk exposure activities in the month prior to onset. In comparison with the excluded case group, a significantly increased proportion of outbreak cases had contact with dogs (100% vs. 63%, P = 0.02) or sighted kangaroos on their residential property (100% vs. 60%, P = 0.02). High rates of tick exposure (92%) were also reported, although this was not significantly different from the excluded case group. While a source of this outbreak could not be confirmed, our findings suggest infections likely occurred via inhalation of aerosols or dust contaminated by Coxiella burnetii, dispersed through the town from either an unidentified animal facility or from excreta of native wildlife or feral animals. Alternatively transmission may have occurred via companion animals or tick vectors.