{"title":"评估社区水平公共卫生干预效果的随机和非随机研究:定义和方法学考虑","authors":"Wolf-Peter Schmidt","doi":"10.1186/s12982-017-0063-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The preferred method to evaluate public health interventions delivered at the level of whole communities is the cluster randomised trial (CRT). The practical limitations of CRTs and the need for alternative methods continue to be debated. There is no consensus on how to classify study designs to evaluate interventions, and how different design features are related to the strength of evidence.</p><p><strong>Analysis: </strong>This article proposes that most study designs for the evaluation of cluster-level interventions fall into four broad categories: the CRT, the non-randomised cluster trial (NCT), the controlled before-and-after study (CBA), and the before-and-after study without control (BA). A CRT needs to fulfil two basic criteria: (1) the intervention is allocated at random; (2) there are sufficient clusters to allow a statistical between-arm comparison. In a NCT, statistical comparison is made across trial arms as in a CRT, but treatment allocation is not random. The defining feature of a CBA is that intervention and control arms are not compared directly, usually because there are insufficient clusters in each arm to allow a statistical comparison. Rather, baseline and follow-up measures of the outcome of interest are compared in the intervention arm, and separately in the control arm. A BA is a CBA without a control group.</p><p><strong>Conclusion: </strong>Each design may provide useful or misleading evidence. A precise baseline measurement of the outcome of interest is critical for causal inference in all studies except CRTs. Apart from statistical considerations the exploration of pre/post trends in the outcome allows a more transparent discussion of study weaknesses than is possible in non-randomised studies without a baseline measure.</p>","PeriodicalId":39896,"journal":{"name":"Emerging Themes in Epidemiology","volume":"14 ","pages":"9"},"PeriodicalIF":3.6000,"publicationDate":"2017-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12982-017-0063-5","citationCount":"23","resultStr":"{\"title\":\"Randomised and non-randomised studies to estimate the effect of community-level public health interventions: definitions and methodological considerations.\",\"authors\":\"Wolf-Peter Schmidt\",\"doi\":\"10.1186/s12982-017-0063-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The preferred method to evaluate public health interventions delivered at the level of whole communities is the cluster randomised trial (CRT). The practical limitations of CRTs and the need for alternative methods continue to be debated. There is no consensus on how to classify study designs to evaluate interventions, and how different design features are related to the strength of evidence.</p><p><strong>Analysis: </strong>This article proposes that most study designs for the evaluation of cluster-level interventions fall into four broad categories: the CRT, the non-randomised cluster trial (NCT), the controlled before-and-after study (CBA), and the before-and-after study without control (BA). A CRT needs to fulfil two basic criteria: (1) the intervention is allocated at random; (2) there are sufficient clusters to allow a statistical between-arm comparison. In a NCT, statistical comparison is made across trial arms as in a CRT, but treatment allocation is not random. The defining feature of a CBA is that intervention and control arms are not compared directly, usually because there are insufficient clusters in each arm to allow a statistical comparison. Rather, baseline and follow-up measures of the outcome of interest are compared in the intervention arm, and separately in the control arm. A BA is a CBA without a control group.</p><p><strong>Conclusion: </strong>Each design may provide useful or misleading evidence. A precise baseline measurement of the outcome of interest is critical for causal inference in all studies except CRTs. Apart from statistical considerations the exploration of pre/post trends in the outcome allows a more transparent discussion of study weaknesses than is possible in non-randomised studies without a baseline measure.</p>\",\"PeriodicalId\":39896,\"journal\":{\"name\":\"Emerging Themes in Epidemiology\",\"volume\":\"14 \",\"pages\":\"9\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2017-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/s12982-017-0063-5\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Emerging Themes in Epidemiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s12982-017-0063-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2017/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Emerging Themes in Epidemiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s12982-017-0063-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
Randomised and non-randomised studies to estimate the effect of community-level public health interventions: definitions and methodological considerations.
Background: The preferred method to evaluate public health interventions delivered at the level of whole communities is the cluster randomised trial (CRT). The practical limitations of CRTs and the need for alternative methods continue to be debated. There is no consensus on how to classify study designs to evaluate interventions, and how different design features are related to the strength of evidence.
Analysis: This article proposes that most study designs for the evaluation of cluster-level interventions fall into four broad categories: the CRT, the non-randomised cluster trial (NCT), the controlled before-and-after study (CBA), and the before-and-after study without control (BA). A CRT needs to fulfil two basic criteria: (1) the intervention is allocated at random; (2) there are sufficient clusters to allow a statistical between-arm comparison. In a NCT, statistical comparison is made across trial arms as in a CRT, but treatment allocation is not random. The defining feature of a CBA is that intervention and control arms are not compared directly, usually because there are insufficient clusters in each arm to allow a statistical comparison. Rather, baseline and follow-up measures of the outcome of interest are compared in the intervention arm, and separately in the control arm. A BA is a CBA without a control group.
Conclusion: Each design may provide useful or misleading evidence. A precise baseline measurement of the outcome of interest is critical for causal inference in all studies except CRTs. Apart from statistical considerations the exploration of pre/post trends in the outcome allows a more transparent discussion of study weaknesses than is possible in non-randomised studies without a baseline measure.
期刊介绍:
Emerging Themes in Epidemiology is an open access, peer-reviewed, online journal that aims to promote debate and discussion on practical and theoretical aspects of epidemiology. Combining statistical approaches with an understanding of the biology of disease, epidemiologists seek to elucidate the social, environmental and host factors related to adverse health outcomes. Although research findings from epidemiologic studies abound in traditional public health journals, little publication space is devoted to discussion of the practical and theoretical concepts that underpin them. Because of its immediate impact on public health, an openly accessible forum is needed in the field of epidemiology to foster such discussion.