利用部分Procrustes距离的蛋白质结构贝叶斯比较。

IF 0.8 4区 数学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Nasim Ejlali, Mohammad Reza Faghihi, Mehdi Sadeghi
{"title":"利用部分Procrustes距离的蛋白质结构贝叶斯比较。","authors":"Nasim Ejlali,&nbsp;Mohammad Reza Faghihi,&nbsp;Mehdi Sadeghi","doi":"10.1515/sagmb-2016-0014","DOIUrl":null,"url":null,"abstract":"<p><p>An important topic in bioinformatics is the protein structure alignment. Some statistical methods have been proposed for this problem, but most of them align two protein structures based on the global geometric information without considering the effect of neighbourhood in the structures. In this paper, we provide a Bayesian model to align protein structures, by considering the effect of both local and global geometric information of protein structures. Local geometric information is incorporated to the model through the partial Procrustes distance of small substructures. These substructures are composed of β-carbon atoms from the side chains. Parameters are estimated using a Markov chain Monte Carlo (MCMC) approach. We evaluate the performance of our model through some simulation studies. Furthermore, we apply our model to a real dataset and assess the accuracy and convergence rate. Results show that our model is much more efficient than previous approaches.</p>","PeriodicalId":48980,"journal":{"name":"Statistical Applications in Genetics and Molecular Biology","volume":"16 4","pages":"243-257"},"PeriodicalIF":0.8000,"publicationDate":"2017-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/sagmb-2016-0014","citationCount":"2","resultStr":"{\"title\":\"Bayesian comparison of protein structures using partial Procrustes distance.\",\"authors\":\"Nasim Ejlali,&nbsp;Mohammad Reza Faghihi,&nbsp;Mehdi Sadeghi\",\"doi\":\"10.1515/sagmb-2016-0014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>An important topic in bioinformatics is the protein structure alignment. Some statistical methods have been proposed for this problem, but most of them align two protein structures based on the global geometric information without considering the effect of neighbourhood in the structures. In this paper, we provide a Bayesian model to align protein structures, by considering the effect of both local and global geometric information of protein structures. Local geometric information is incorporated to the model through the partial Procrustes distance of small substructures. These substructures are composed of β-carbon atoms from the side chains. Parameters are estimated using a Markov chain Monte Carlo (MCMC) approach. We evaluate the performance of our model through some simulation studies. Furthermore, we apply our model to a real dataset and assess the accuracy and convergence rate. Results show that our model is much more efficient than previous approaches.</p>\",\"PeriodicalId\":48980,\"journal\":{\"name\":\"Statistical Applications in Genetics and Molecular Biology\",\"volume\":\"16 4\",\"pages\":\"243-257\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2017-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/sagmb-2016-0014\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Applications in Genetics and Molecular Biology\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/sagmb-2016-0014\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Applications in Genetics and Molecular Biology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/sagmb-2016-0014","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 2

摘要

蛋白质结构比对是生物信息学中的一个重要课题。针对这一问题,已经提出了一些统计方法,但大多数方法都是基于全局几何信息对两个蛋白质结构进行排列,而没有考虑结构中邻域的影响。本文通过考虑蛋白质结构的局部和全局几何信息的影响,提出了一种蛋白质结构对齐的贝叶斯模型。通过小子结构的局部Procrustes距离将局部几何信息纳入模型。这些亚结构是由侧链上的β-碳原子组成的。参数估计使用马尔可夫链蒙特卡罗(MCMC)方法。我们通过一些仿真研究来评估我们的模型的性能。此外,我们将该模型应用于实际数据集,并评估了准确性和收敛速度。结果表明,我们的模型比以前的方法更有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bayesian comparison of protein structures using partial Procrustes distance.

An important topic in bioinformatics is the protein structure alignment. Some statistical methods have been proposed for this problem, but most of them align two protein structures based on the global geometric information without considering the effect of neighbourhood in the structures. In this paper, we provide a Bayesian model to align protein structures, by considering the effect of both local and global geometric information of protein structures. Local geometric information is incorporated to the model through the partial Procrustes distance of small substructures. These substructures are composed of β-carbon atoms from the side chains. Parameters are estimated using a Markov chain Monte Carlo (MCMC) approach. We evaluate the performance of our model through some simulation studies. Furthermore, we apply our model to a real dataset and assess the accuracy and convergence rate. Results show that our model is much more efficient than previous approaches.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Statistical Applications in Genetics and Molecular Biology
Statistical Applications in Genetics and Molecular Biology BIOCHEMISTRY & MOLECULAR BIOLOGY-MATHEMATICAL & COMPUTATIONAL BIOLOGY
自引率
11.10%
发文量
8
期刊介绍: Statistical Applications in Genetics and Molecular Biology seeks to publish significant research on the application of statistical ideas to problems arising from computational biology. The focus of the papers should be on the relevant statistical issues but should contain a succinct description of the relevant biological problem being considered. The range of topics is wide and will include topics such as linkage mapping, association studies, gene finding and sequence alignment, protein structure prediction, design and analysis of microarray data, molecular evolution and phylogenetic trees, DNA topology, and data base search strategies. Both original research and review articles will be warmly received.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信