通过 Haseman-Elston 回归得出遗传率的置信区间。

IF 0.8 4区 数学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Tamar Sofer
{"title":"通过 Haseman-Elston 回归得出遗传率的置信区间。","authors":"Tamar Sofer","doi":"10.1515/sagmb-2016-0076","DOIUrl":null,"url":null,"abstract":"<p><p>Heritability is the proportion of phenotypic variance in a population that is attributable to individual genotypes. Heritability is considered an important measure in both evolutionary biology and in medicine, and is routinely estimated and reported in genetic epidemiology studies. In population-based genome-wide association studies (GWAS), mixed models are used to estimate variance components, from which a heritability estimate is obtained. The estimated heritability is the proportion of the model's total variance that is due to the genetic relatedness matrix (kinship measured from genotypes). Current practice is to use bootstrapping, which is slow, or normal asymptotic approximation to estimate the precision of the heritability estimate; however, this approximation fails to hold near the boundaries of the parameter space or when the sample size is small. In this paper we propose to estimate variance components via a Haseman-Elston regression, find the asymptotic distribution of the variance components and proportions of variance, and use them to construct confidence intervals (CIs). Our method is further developed to obtain unbiased variance components estimators and construct CIs by meta-analyzing information from multiple studies. We demonstrate our approach on data from the Hispanic Community Health Study/Study of Latinos (HCHS/SOL).</p>","PeriodicalId":48980,"journal":{"name":"Statistical Applications in Genetics and Molecular Biology","volume":"16 4","pages":"259-273"},"PeriodicalIF":0.8000,"publicationDate":"2017-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5857391/pdf/nihms922922.pdf","citationCount":"0","resultStr":"{\"title\":\"Confidence intervals for heritability via Haseman-Elston regression.\",\"authors\":\"Tamar Sofer\",\"doi\":\"10.1515/sagmb-2016-0076\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Heritability is the proportion of phenotypic variance in a population that is attributable to individual genotypes. Heritability is considered an important measure in both evolutionary biology and in medicine, and is routinely estimated and reported in genetic epidemiology studies. In population-based genome-wide association studies (GWAS), mixed models are used to estimate variance components, from which a heritability estimate is obtained. The estimated heritability is the proportion of the model's total variance that is due to the genetic relatedness matrix (kinship measured from genotypes). Current practice is to use bootstrapping, which is slow, or normal asymptotic approximation to estimate the precision of the heritability estimate; however, this approximation fails to hold near the boundaries of the parameter space or when the sample size is small. In this paper we propose to estimate variance components via a Haseman-Elston regression, find the asymptotic distribution of the variance components and proportions of variance, and use them to construct confidence intervals (CIs). Our method is further developed to obtain unbiased variance components estimators and construct CIs by meta-analyzing information from multiple studies. We demonstrate our approach on data from the Hispanic Community Health Study/Study of Latinos (HCHS/SOL).</p>\",\"PeriodicalId\":48980,\"journal\":{\"name\":\"Statistical Applications in Genetics and Molecular Biology\",\"volume\":\"16 4\",\"pages\":\"259-273\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2017-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5857391/pdf/nihms922922.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Applications in Genetics and Molecular Biology\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/sagmb-2016-0076\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Applications in Genetics and Molecular Biology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/sagmb-2016-0076","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

遗传率是指群体中表型变异可归因于个体基因型的比例。遗传率在进化生物学和医学中都被认为是一个重要的衡量指标,在遗传流行病学研究中被常规估算和报告。在基于人群的全基因组关联研究(GWAS)中,使用混合模型来估计方差分量,并从中得到遗传率估计值。估计的遗传率是由遗传亲缘关系矩阵(从基因型测得的亲缘关系)引起的模型总方差的比例。目前的做法是使用引导法(速度较慢)或正态渐近法来估计遗传率估计值的精度;然而,这种近似方法在参数空间的边界附近或样本量较小时不能成立。在本文中,我们建议通过 Haseman-Elston 回归估计方差分量,找到方差分量和方差比例的渐近分布,并利用它们构建置信区间(CI)。我们的方法得到了进一步发展,可以通过元分析多项研究的信息来获得无偏的方差分量估计值并构建置信区间。我们在西班牙裔社区健康研究/拉美裔研究(HCHS/SOL)的数据中演示了我们的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Confidence intervals for heritability via Haseman-Elston regression.

Confidence intervals for heritability via Haseman-Elston regression.

Confidence intervals for heritability via Haseman-Elston regression.

Heritability is the proportion of phenotypic variance in a population that is attributable to individual genotypes. Heritability is considered an important measure in both evolutionary biology and in medicine, and is routinely estimated and reported in genetic epidemiology studies. In population-based genome-wide association studies (GWAS), mixed models are used to estimate variance components, from which a heritability estimate is obtained. The estimated heritability is the proportion of the model's total variance that is due to the genetic relatedness matrix (kinship measured from genotypes). Current practice is to use bootstrapping, which is slow, or normal asymptotic approximation to estimate the precision of the heritability estimate; however, this approximation fails to hold near the boundaries of the parameter space or when the sample size is small. In this paper we propose to estimate variance components via a Haseman-Elston regression, find the asymptotic distribution of the variance components and proportions of variance, and use them to construct confidence intervals (CIs). Our method is further developed to obtain unbiased variance components estimators and construct CIs by meta-analyzing information from multiple studies. We demonstrate our approach on data from the Hispanic Community Health Study/Study of Latinos (HCHS/SOL).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Statistical Applications in Genetics and Molecular Biology
Statistical Applications in Genetics and Molecular Biology BIOCHEMISTRY & MOLECULAR BIOLOGY-MATHEMATICAL & COMPUTATIONAL BIOLOGY
自引率
11.10%
发文量
8
期刊介绍: Statistical Applications in Genetics and Molecular Biology seeks to publish significant research on the application of statistical ideas to problems arising from computational biology. The focus of the papers should be on the relevant statistical issues but should contain a succinct description of the relevant biological problem being considered. The range of topics is wide and will include topics such as linkage mapping, association studies, gene finding and sequence alignment, protein structure prediction, design and analysis of microarray data, molecular evolution and phylogenetic trees, DNA topology, and data base search strategies. Both original research and review articles will be warmly received.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信