生物模拟模型的定性因果分析。

CEUR workshop proceedings Pub Date : 2016-08-01 Epub Date: 2016-11-29
Maxwell L Neal, John H Gennari, Daniel L Cook
{"title":"生物模拟模型的定性因果分析。","authors":"Maxwell L Neal,&nbsp;John H Gennari,&nbsp;Daniel L Cook","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>We describe an approach for performing qualitative, systems-level causal analyses on biosimulation models that leverages semantics-based modeling formats, formal ontology, and automated inference. The approach allows users to quickly investigate how a qualitative perturbation to an element within a model's network (an increment or decrement) propagates throughout the modeled system. To support such analyses, we must interpret and annotate the semantics of the models, including both the physical properties modeled and the dependencies that relate them. We build from prior work understanding the semantics of biological properties, but here, we focus on the semantics for dependencies, which provide the critical knowledge necessary for causal analysis of biosimulation models. We describe augmentations to the Ontology of Physics for Biology, via OWL axioms and SWRL rules, and demonstrate that a reasoner can then infer how an annotated model's physical properties influence each other in a qualitative sense. Our goal is to provide researchers with a tool that helps bring the systems-level network dynamics of biosimulation models into perspective, thus facilitating model development, testing, and application.</p>","PeriodicalId":72554,"journal":{"name":"CEUR workshop proceedings","volume":"1747 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5551042/pdf/nihms890699.pdf","citationCount":"0","resultStr":"{\"title\":\"Qualitative causal analyses of biosimulation models.\",\"authors\":\"Maxwell L Neal,&nbsp;John H Gennari,&nbsp;Daniel L Cook\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We describe an approach for performing qualitative, systems-level causal analyses on biosimulation models that leverages semantics-based modeling formats, formal ontology, and automated inference. The approach allows users to quickly investigate how a qualitative perturbation to an element within a model's network (an increment or decrement) propagates throughout the modeled system. To support such analyses, we must interpret and annotate the semantics of the models, including both the physical properties modeled and the dependencies that relate them. We build from prior work understanding the semantics of biological properties, but here, we focus on the semantics for dependencies, which provide the critical knowledge necessary for causal analysis of biosimulation models. We describe augmentations to the Ontology of Physics for Biology, via OWL axioms and SWRL rules, and demonstrate that a reasoner can then infer how an annotated model's physical properties influence each other in a qualitative sense. Our goal is to provide researchers with a tool that helps bring the systems-level network dynamics of biosimulation models into perspective, thus facilitating model development, testing, and application.</p>\",\"PeriodicalId\":72554,\"journal\":{\"name\":\"CEUR workshop proceedings\",\"volume\":\"1747 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5551042/pdf/nihms890699.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CEUR workshop proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2016/11/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CEUR workshop proceedings","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2016/11/29 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们描述了一种对生物模拟模型进行定性、系统级因果分析的方法,该方法利用基于语义的建模格式、形式化本体和自动推理。该方法允许用户快速调查模型网络中元素的定性扰动(增量或减量)如何在整个建模系统中传播。为了支持这样的分析,我们必须解释和注释模型的语义,包括建模的物理属性和与它们相关的依赖关系。我们从之前的工作中了解生物特性的语义,但在这里,我们专注于依赖关系的语义,这为生物模拟模型的因果分析提供了必要的关键知识。我们通过OWL公理和SWRL规则描述了生物物理本体论的扩充,并证明了推理器可以在定性意义上推断出注释模型的物理性质如何相互影响。我们的目标是为研究人员提供一种工具,帮助他们将生物模拟模型的系统级网络动力学带入视野,从而促进模型的开发,测试和应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Qualitative causal analyses of biosimulation models.

Qualitative causal analyses of biosimulation models.

Qualitative causal analyses of biosimulation models.

Qualitative causal analyses of biosimulation models.

We describe an approach for performing qualitative, systems-level causal analyses on biosimulation models that leverages semantics-based modeling formats, formal ontology, and automated inference. The approach allows users to quickly investigate how a qualitative perturbation to an element within a model's network (an increment or decrement) propagates throughout the modeled system. To support such analyses, we must interpret and annotate the semantics of the models, including both the physical properties modeled and the dependencies that relate them. We build from prior work understanding the semantics of biological properties, but here, we focus on the semantics for dependencies, which provide the critical knowledge necessary for causal analysis of biosimulation models. We describe augmentations to the Ontology of Physics for Biology, via OWL axioms and SWRL rules, and demonstrate that a reasoner can then infer how an annotated model's physical properties influence each other in a qualitative sense. Our goal is to provide researchers with a tool that helps bring the systems-level network dynamics of biosimulation models into perspective, thus facilitating model development, testing, and application.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信