Berglind Adalsteinsdottir, Runolfur Palsson, Robert J Desnick, Marianna Gardarsdottir, Polakit Teekakirikul, Martin Maron, Evan Appelbaum, Ulf Neisius, Barry J Maron, Michael A Burke, Brenden Chen, Silvere Pagant, Christoffer V Madsen, Ragnar Danielsen, Reynir Arngrimsson, Ulla Feldt-Rasmussen, Jonathan G Seidman, Christine E Seidman, Gunnar Th Gunnarsson
{"title":"肥厚性心肌病家族中的法布里病:经典型和晚发型的临床表现","authors":"Berglind Adalsteinsdottir, Runolfur Palsson, Robert J Desnick, Marianna Gardarsdottir, Polakit Teekakirikul, Martin Maron, Evan Appelbaum, Ulf Neisius, Barry J Maron, Michael A Burke, Brenden Chen, Silvere Pagant, Christoffer V Madsen, Ragnar Danielsen, Reynir Arngrimsson, Ulla Feldt-Rasmussen, Jonathan G Seidman, Christine E Seidman, Gunnar Th Gunnarsson","doi":"10.1161/CIRCGENETICS.116.001639","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The screening of Icelandic patients clinically diagnosed with hypertrophic cardiomyopathy resulted in identification of 8 individuals from 2 families with X-linked Fabry disease (FD) caused by <i>GLA</i>(α-galactosidase A gene) mutations encoding p.D322E (family A) or p.I232T (family B).</p><p><strong>Methods and results: </strong>Familial screening of at-risk relatives identified mutations in 16 family A members (8 men and 8 heterozygotes) and 25 family B members (10 men and 15 heterozygotes). Clinical assessments, α-galactosidase A (α-GalA) activities, glycosphingolipid substrate levels, and in vitro mutation expression were used to categorize p.D322E as a classic FD mutation and p.I232T as a later-onset FD mutation. In vitro expression revealed that p.D322E and p.I232T had α-GalA activities of 1.4% and 14.9% of the mean wild-type activity, respectively. Family A men had markedly decreased α-GalA activity and childhood-onset classic manifestations, except for angiokeratoma and cornea verticillata. Family B men had residual α-GalA activity and developed FD manifestations in adulthood. Despite these differences, all family A and family B men >30 years of age had left ventricular hypertrophy, which was mainly asymmetrical, and had similar late gadolinium enhancement patterns. Ischemic stroke and severe white matter lesions were more frequent among family A men, but neither family A nor family B men had overt renal disease. Family A and family B heterozygotes had less severe or no clinical manifestations.</p><p><strong>Conclusions: </strong>Men with classic or later-onset FD caused by <i>GLA</i> missense mutations developed prominent and similar cardiovascular disease at similar ages, despite markedly different α-GalA activities.</p>","PeriodicalId":10277,"journal":{"name":"Circulation: Cardiovascular Genetics","volume":"10 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1161/CIRCGENETICS.116.001639","citationCount":"18","resultStr":"{\"title\":\"Fabry Disease in Families With Hypertrophic Cardiomyopathy: Clinical Manifestations in the Classic and Later-Onset Phenotypes.\",\"authors\":\"Berglind Adalsteinsdottir, Runolfur Palsson, Robert J Desnick, Marianna Gardarsdottir, Polakit Teekakirikul, Martin Maron, Evan Appelbaum, Ulf Neisius, Barry J Maron, Michael A Burke, Brenden Chen, Silvere Pagant, Christoffer V Madsen, Ragnar Danielsen, Reynir Arngrimsson, Ulla Feldt-Rasmussen, Jonathan G Seidman, Christine E Seidman, Gunnar Th Gunnarsson\",\"doi\":\"10.1161/CIRCGENETICS.116.001639\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The screening of Icelandic patients clinically diagnosed with hypertrophic cardiomyopathy resulted in identification of 8 individuals from 2 families with X-linked Fabry disease (FD) caused by <i>GLA</i>(α-galactosidase A gene) mutations encoding p.D322E (family A) or p.I232T (family B).</p><p><strong>Methods and results: </strong>Familial screening of at-risk relatives identified mutations in 16 family A members (8 men and 8 heterozygotes) and 25 family B members (10 men and 15 heterozygotes). Clinical assessments, α-galactosidase A (α-GalA) activities, glycosphingolipid substrate levels, and in vitro mutation expression were used to categorize p.D322E as a classic FD mutation and p.I232T as a later-onset FD mutation. In vitro expression revealed that p.D322E and p.I232T had α-GalA activities of 1.4% and 14.9% of the mean wild-type activity, respectively. Family A men had markedly decreased α-GalA activity and childhood-onset classic manifestations, except for angiokeratoma and cornea verticillata. Family B men had residual α-GalA activity and developed FD manifestations in adulthood. Despite these differences, all family A and family B men >30 years of age had left ventricular hypertrophy, which was mainly asymmetrical, and had similar late gadolinium enhancement patterns. Ischemic stroke and severe white matter lesions were more frequent among family A men, but neither family A nor family B men had overt renal disease. Family A and family B heterozygotes had less severe or no clinical manifestations.</p><p><strong>Conclusions: </strong>Men with classic or later-onset FD caused by <i>GLA</i> missense mutations developed prominent and similar cardiovascular disease at similar ages, despite markedly different α-GalA activities.</p>\",\"PeriodicalId\":10277,\"journal\":{\"name\":\"Circulation: Cardiovascular Genetics\",\"volume\":\"10 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1161/CIRCGENETICS.116.001639\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Circulation: Cardiovascular Genetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1161/CIRCGENETICS.116.001639\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Circulation: Cardiovascular Genetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1161/CIRCGENETICS.116.001639","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fabry Disease in Families With Hypertrophic Cardiomyopathy: Clinical Manifestations in the Classic and Later-Onset Phenotypes.
Background: The screening of Icelandic patients clinically diagnosed with hypertrophic cardiomyopathy resulted in identification of 8 individuals from 2 families with X-linked Fabry disease (FD) caused by GLA(α-galactosidase A gene) mutations encoding p.D322E (family A) or p.I232T (family B).
Methods and results: Familial screening of at-risk relatives identified mutations in 16 family A members (8 men and 8 heterozygotes) and 25 family B members (10 men and 15 heterozygotes). Clinical assessments, α-galactosidase A (α-GalA) activities, glycosphingolipid substrate levels, and in vitro mutation expression were used to categorize p.D322E as a classic FD mutation and p.I232T as a later-onset FD mutation. In vitro expression revealed that p.D322E and p.I232T had α-GalA activities of 1.4% and 14.9% of the mean wild-type activity, respectively. Family A men had markedly decreased α-GalA activity and childhood-onset classic manifestations, except for angiokeratoma and cornea verticillata. Family B men had residual α-GalA activity and developed FD manifestations in adulthood. Despite these differences, all family A and family B men >30 years of age had left ventricular hypertrophy, which was mainly asymmetrical, and had similar late gadolinium enhancement patterns. Ischemic stroke and severe white matter lesions were more frequent among family A men, but neither family A nor family B men had overt renal disease. Family A and family B heterozygotes had less severe or no clinical manifestations.
Conclusions: Men with classic or later-onset FD caused by GLA missense mutations developed prominent and similar cardiovascular disease at similar ages, despite markedly different α-GalA activities.
期刊介绍:
Circulation: Genomic and Precision Medicine considers all types of original research articles, including studies conducted in human subjects, laboratory animals, in vitro, and in silico. Articles may include investigations of: clinical genetics as applied to the diagnosis and management of monogenic or oligogenic cardiovascular disorders; the molecular basis of complex cardiovascular disorders, including genome-wide association studies, exome and genome sequencing-based association studies, coding variant association studies, genetic linkage studies, epigenomics, transcriptomics, proteomics, metabolomics, and metagenomics; integration of electronic health record data or patient-generated data with any of the aforementioned approaches, including phenome-wide association studies, or with environmental or lifestyle factors; pharmacogenomics; regulation of gene expression; gene therapy and therapeutic genomic editing; systems biology approaches to the diagnosis and management of cardiovascular disorders; novel methods to perform any of the aforementioned studies; and novel applications of precision medicine. Above all, we seek studies with relevance to human cardiovascular biology and disease.