Steven S Witkin, Evelyn Minis, Aikaterini Athanasiou, Julie Leizer, Iara M Linhares
{"title":"沙眼衣原体:持久性病原体。","authors":"Steven S Witkin, Evelyn Minis, Aikaterini Athanasiou, Julie Leizer, Iara M Linhares","doi":"10.1128/CVI.00203-17","DOIUrl":null,"url":null,"abstract":"<p><p><i>Chlamydia trachomatis</i> is an obligate intracellular bacterium whose only natural host is humans. Although presenting as asymptomatic in most women, genital tract chlamydial infections are a leading cause of pelvic inflammatory disease, tubal factor infertility, and ectopic pregnancy. <i>C. trachomatis</i> has evolved successful mechanisms to avoid destruction by autophagy and the host immune system and persist within host epithelial cells. The intracellular form of this organism, the reticulate body, can enter into a persistent nonreplicative but viable state under unfavorable conditions. The infectious form of the organism, the elementary body, is again generated when the immune attack subsides. In its persistent form, <i>C. trachomatis</i> ceases to produce its major structural and membrane components, but synthesis of its 60-kDa heat shock protein (hsp60) is greatly upregulated and released from the cell. The immune response to hsp60, perhaps exacerbated by repeated cycles of productive infection and persistence, may promote damage to fallopian tube epithelial cells, scar formation, and tubal occlusion. The chlamydial and human hsp60 proteins are very similar, and hsp60 is one of the first proteins produced by newly formed embryos. Thus, the development of immunity to epitopes in the chlamydial hsp60 that are also present in the corresponding human hsp60 may increase susceptibility to pregnancy failure in infected women. Delineation of host factors that increase the likelihood that <i>C. trachomatis</i> will avoid immune destruction and survive within host epithelial cells and utilization of this knowledge to design individualized preventative and treatment protocols are needed to more effectively combat infections by this persistent pathogen.</p>","PeriodicalId":10271,"journal":{"name":"Clinical and Vaccine Immunology","volume":"24 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1128/CVI.00203-17","citationCount":"115","resultStr":"{\"title\":\"Chlamydia trachomatis: the Persistent Pathogen.\",\"authors\":\"Steven S Witkin, Evelyn Minis, Aikaterini Athanasiou, Julie Leizer, Iara M Linhares\",\"doi\":\"10.1128/CVI.00203-17\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Chlamydia trachomatis</i> is an obligate intracellular bacterium whose only natural host is humans. Although presenting as asymptomatic in most women, genital tract chlamydial infections are a leading cause of pelvic inflammatory disease, tubal factor infertility, and ectopic pregnancy. <i>C. trachomatis</i> has evolved successful mechanisms to avoid destruction by autophagy and the host immune system and persist within host epithelial cells. The intracellular form of this organism, the reticulate body, can enter into a persistent nonreplicative but viable state under unfavorable conditions. The infectious form of the organism, the elementary body, is again generated when the immune attack subsides. In its persistent form, <i>C. trachomatis</i> ceases to produce its major structural and membrane components, but synthesis of its 60-kDa heat shock protein (hsp60) is greatly upregulated and released from the cell. The immune response to hsp60, perhaps exacerbated by repeated cycles of productive infection and persistence, may promote damage to fallopian tube epithelial cells, scar formation, and tubal occlusion. The chlamydial and human hsp60 proteins are very similar, and hsp60 is one of the first proteins produced by newly formed embryos. Thus, the development of immunity to epitopes in the chlamydial hsp60 that are also present in the corresponding human hsp60 may increase susceptibility to pregnancy failure in infected women. Delineation of host factors that increase the likelihood that <i>C. trachomatis</i> will avoid immune destruction and survive within host epithelial cells and utilization of this knowledge to design individualized preventative and treatment protocols are needed to more effectively combat infections by this persistent pathogen.</p>\",\"PeriodicalId\":10271,\"journal\":{\"name\":\"Clinical and Vaccine Immunology\",\"volume\":\"24 10\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1128/CVI.00203-17\",\"citationCount\":\"115\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical and Vaccine Immunology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1128/CVI.00203-17\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2017/10/1 0:00:00\",\"PubModel\":\"Print\",\"JCR\":\"Q2\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical and Vaccine Immunology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1128/CVI.00203-17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/10/1 0:00:00","PubModel":"Print","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Chlamydia trachomatis is an obligate intracellular bacterium whose only natural host is humans. Although presenting as asymptomatic in most women, genital tract chlamydial infections are a leading cause of pelvic inflammatory disease, tubal factor infertility, and ectopic pregnancy. C. trachomatis has evolved successful mechanisms to avoid destruction by autophagy and the host immune system and persist within host epithelial cells. The intracellular form of this organism, the reticulate body, can enter into a persistent nonreplicative but viable state under unfavorable conditions. The infectious form of the organism, the elementary body, is again generated when the immune attack subsides. In its persistent form, C. trachomatis ceases to produce its major structural and membrane components, but synthesis of its 60-kDa heat shock protein (hsp60) is greatly upregulated and released from the cell. The immune response to hsp60, perhaps exacerbated by repeated cycles of productive infection and persistence, may promote damage to fallopian tube epithelial cells, scar formation, and tubal occlusion. The chlamydial and human hsp60 proteins are very similar, and hsp60 is one of the first proteins produced by newly formed embryos. Thus, the development of immunity to epitopes in the chlamydial hsp60 that are also present in the corresponding human hsp60 may increase susceptibility to pregnancy failure in infected women. Delineation of host factors that increase the likelihood that C. trachomatis will avoid immune destruction and survive within host epithelial cells and utilization of this knowledge to design individualized preventative and treatment protocols are needed to more effectively combat infections by this persistent pathogen.
期刊介绍:
Cessation. First launched as Clinical and Diagnostic Laboratory Immunology (CDLI) in 1994, CVI published articles that enhanced the understanding of the immune response in health and disease and after vaccination by showcasing discoveries in clinical, laboratory, and vaccine immunology. CVI was committed to advancing all aspects of vaccine research and immunization, including discovery of new vaccine antigens and vaccine design, development and evaluation of vaccines in animal models and in humans, characterization of immune responses and mechanisms of vaccine action, controlled challenge studies to assess vaccine efficacy, study of vaccine vectors, adjuvants, and immunomodulators, immune correlates of protection, and clinical trials.