圆锥上的算术级数

IF 0.3 Q4 MATHEMATICS
Journal of Integer Sequences Pub Date : 2017-01-01 Epub Date: 2016-12-27
Abdoul Aziz Ciss, Dustin Moody
{"title":"圆锥上的算术级数","authors":"Abdoul Aziz Ciss, Dustin Moody","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, we look at long arithmetic progressions on conics. By an arithmetic progression on a curve, we mean the existence of rational points on the curve whose <i>x</i>-coordinates are in arithmetic progression. We revisit arithmetic progressions on the unit circle, constructing 3-term progressions of points in the first quadrant containing an arbitrary rational point on the unit circle. We also provide infinite families of three term progressions on the unit hyperbola, as well as conics <i>ax</i><sup>2</sup> + <i>cy</i><sup>2</sup> = 1 containing arithmetic progressions as long as 8 terms.</p>","PeriodicalId":46195,"journal":{"name":"Journal of Integer Sequences","volume":"20 ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5535277/pdf/nihms875076.pdf","citationCount":"0","resultStr":"{\"title\":\"Arithmetic Progressions on Conics.\",\"authors\":\"Abdoul Aziz Ciss, Dustin Moody\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this paper, we look at long arithmetic progressions on conics. By an arithmetic progression on a curve, we mean the existence of rational points on the curve whose <i>x</i>-coordinates are in arithmetic progression. We revisit arithmetic progressions on the unit circle, constructing 3-term progressions of points in the first quadrant containing an arbitrary rational point on the unit circle. We also provide infinite families of three term progressions on the unit hyperbola, as well as conics <i>ax</i><sup>2</sup> + <i>cy</i><sup>2</sup> = 1 containing arithmetic progressions as long as 8 terms.</p>\",\"PeriodicalId\":46195,\"journal\":{\"name\":\"Journal of Integer Sequences\",\"volume\":\"20 \",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5535277/pdf/nihms875076.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Integer Sequences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2016/12/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Integer Sequences","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2016/12/27 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究圆锥曲线上的长算术级数。所谓曲线上的算术级数,是指曲线上存在 x 坐标在算术级数中的有理点。我们重温了单位圆上的算术级数,构建了包含单位圆上任意有理点的第一象限中点的三项级数。我们还提供了单位双曲线上三项级数的无穷族,以及包含长达 8 项级数的算术级数的圆锥 ax2 + cy2 = 1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Arithmetic Progressions on Conics.

In this paper, we look at long arithmetic progressions on conics. By an arithmetic progression on a curve, we mean the existence of rational points on the curve whose x-coordinates are in arithmetic progression. We revisit arithmetic progressions on the unit circle, constructing 3-term progressions of points in the first quadrant containing an arbitrary rational point on the unit circle. We also provide infinite families of three term progressions on the unit hyperbola, as well as conics ax2 + cy2 = 1 containing arithmetic progressions as long as 8 terms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
20.00%
发文量
0
期刊介绍: Electronic submission is required. Please submit your paper in LaTeX format. No other formats are currently acceptable. Do NOT send pdf or dvi files. If there are accompanying style files or diagrams, please be sure to include them. Diagrams should be prepared in .ps (postscript) format, not pdf or other formats. The header line of your email message should read "Submission to the Journal of Integer Sequences". (Any other header is in danger of being discarded by a spam filter.) If there are multiple files, please consider sending them as a Unix tar file. Be sure that your submission latex"es properly with no errors or warning messages.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信