2002-2006年俄亥俄州库蚊西尼罗病毒气象驱动因子新指标研究

IF 0.8 4区 环境科学与生态学 Q4 ENVIRONMENTAL SCIENCES
Journal of Environmental Health Pub Date : 2017-04-01
Paul A Rosalie, Michael Bisesi
{"title":"2002-2006年俄亥俄州库蚊西尼罗病毒气象驱动因子新指标研究","authors":"Paul A Rosalie,&nbsp;Michael Bisesi","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Novel indices were developed representing estimated stages in the mosquito life cycle and its ecology, and informed with meteorological data. We used descriptive statistics to identify relationships between meteorological/ecological trends and peak infection rates (IRs), and mixed model linear regression to identify meteorological/ecological trends that were significantly associated with increases in mosquito IRs. Results showed increased mean weekly temperature as a significant driver of increased IRs between 2002 and 2006 during oviposition (the trapping week); the gonotrophic cycle; the egg, larvae, and pupae stage; the development of oviposition sites; and during the over-winter months preceding trapping. Decreases in weekly cumulative precipitation during the last half of the development of oviposition sites, and the egg, larvae, and pupae stage, were significantly associated with increases in IRs. Increased cumulative precipitation during the first half of the development of oviposition sites was significantly associated with increases in IRs. Decreases in the weekly Palmer Drought Index during the development of oviposition sites were significantly associated with increases in IRs.</p>","PeriodicalId":15713,"journal":{"name":"Journal of Environmental Health","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2017-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Novel Indices of Meterological Drivers of West Nile Virus in Ohio Culex Species Mosquitoes From 2002-2006.\",\"authors\":\"Paul A Rosalie,&nbsp;Michael Bisesi\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Novel indices were developed representing estimated stages in the mosquito life cycle and its ecology, and informed with meteorological data. We used descriptive statistics to identify relationships between meteorological/ecological trends and peak infection rates (IRs), and mixed model linear regression to identify meteorological/ecological trends that were significantly associated with increases in mosquito IRs. Results showed increased mean weekly temperature as a significant driver of increased IRs between 2002 and 2006 during oviposition (the trapping week); the gonotrophic cycle; the egg, larvae, and pupae stage; the development of oviposition sites; and during the over-winter months preceding trapping. Decreases in weekly cumulative precipitation during the last half of the development of oviposition sites, and the egg, larvae, and pupae stage, were significantly associated with increases in IRs. Increased cumulative precipitation during the first half of the development of oviposition sites was significantly associated with increases in IRs. Decreases in the weekly Palmer Drought Index during the development of oviposition sites were significantly associated with increases in IRs.</p>\",\"PeriodicalId\":15713,\"journal\":{\"name\":\"Journal of Environmental Health\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2017-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Environmental Health\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Health","FirstCategoryId":"93","ListUrlMain":"","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

利用气象资料,建立了代表蚊虫生命周期和生态的新指标。我们使用描述性统计来确定气象/生态趋势与峰值感染率(IRs)之间的关系,并使用混合模型线性回归来确定与蚊子ir增加显著相关的气象/生态趋势。结果表明:2002 ~ 2006年产卵周(捕集周)平均周温升高是ir升高的重要驱动因素;淋养循环;卵、幼虫和蛹阶段;产卵地点的发育;在诱捕前的几个越冬期间。在卵、幼虫和蛹发育的后半期,周累积降水量的减少与ir的增加显著相关。在产卵地点发育的前半期,累积降水的增加与ir的增加显著相关。在产卵地发育期间,每周Palmer干旱指数的下降与ir的增加显著相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Novel Indices of Meterological Drivers of West Nile Virus in Ohio Culex Species Mosquitoes From 2002-2006.

Novel indices were developed representing estimated stages in the mosquito life cycle and its ecology, and informed with meteorological data. We used descriptive statistics to identify relationships between meteorological/ecological trends and peak infection rates (IRs), and mixed model linear regression to identify meteorological/ecological trends that were significantly associated with increases in mosquito IRs. Results showed increased mean weekly temperature as a significant driver of increased IRs between 2002 and 2006 during oviposition (the trapping week); the gonotrophic cycle; the egg, larvae, and pupae stage; the development of oviposition sites; and during the over-winter months preceding trapping. Decreases in weekly cumulative precipitation during the last half of the development of oviposition sites, and the egg, larvae, and pupae stage, were significantly associated with increases in IRs. Increased cumulative precipitation during the first half of the development of oviposition sites was significantly associated with increases in IRs. Decreases in the weekly Palmer Drought Index during the development of oviposition sites were significantly associated with increases in IRs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Environmental Health
Journal of Environmental Health 环境科学-公共卫生、环境卫生与职业卫生
CiteScore
0.60
自引率
12.50%
发文量
1
审稿时长
>36 weeks
期刊介绍: The Journal of Environmental Health (JEH) is published 10 times per year by the National Environmental Health Association and keeps readers up-to-date on current issues, new research, useful products and services, and employment opportunities. As the only direct link to the complete spectrum of environmental health topics, the JEH reaches more than 20,000 professionals working to solve problems in areas such as air quality, drinking water, food safety and protection, hazardous materials/toxic substances management, institutional environmental health, occupational safety and health, terrorism and all-hazards preparedness, vector control, wastewater management, and water pollution control/water quality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信