{"title":"通过 LLV 代数衍生出的超凯勒流形类别。","authors":"T Beckmann","doi":"10.1007/s00032-022-00358-x","DOIUrl":null,"url":null,"abstract":"<p><p>We mostly review work of Taelman (Derived equivalences of hyperkähler varieties, 2019, arXiv:1906.08081) on derived categories of hyper-Kähler manifolds. We study the LLV algebra using polyvector fields to prove that it is a derived invariant. Applications to the action of derived equivalences on cohomology and to the study of their Hodge structures are given.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9708817/pdf/","citationCount":"0","resultStr":"{\"title\":\"Derived Categories of Hyper-Kähler Manifolds via the LLV Algebra.\",\"authors\":\"T Beckmann\",\"doi\":\"10.1007/s00032-022-00358-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We mostly review work of Taelman (Derived equivalences of hyperkähler varieties, 2019, arXiv:1906.08081) on derived categories of hyper-Kähler manifolds. We study the LLV algebra using polyvector fields to prove that it is a derived invariant. Applications to the action of derived equivalences on cohomology and to the study of their Hodge structures are given.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9708817/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00032-022-00358-x\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/6/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00032-022-00358-x","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/6/21 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
我们主要回顾了泰尔曼(Derived equivalences of hyperkähler varieties, 2019, arXiv:1906.08081)关于超凯勒流形派生范畴的工作。我们利用多向量场研究 LLV 代数,证明它是一个派生不变量。我们还给出了派生等价物对同调的作用及其霍奇结构研究的应用。
Derived Categories of Hyper-Kähler Manifolds via the LLV Algebra.
We mostly review work of Taelman (Derived equivalences of hyperkähler varieties, 2019, arXiv:1906.08081) on derived categories of hyper-Kähler manifolds. We study the LLV algebra using polyvector fields to prove that it is a derived invariant. Applications to the action of derived equivalences on cohomology and to the study of their Hodge structures are given.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.