下肢外骨骼总能量整形控制研究。

Ge Lv, Robert D Gregg
{"title":"下肢外骨骼总能量整形控制研究。","authors":"Ge Lv,&nbsp;Robert D Gregg","doi":"10.23919/ACC.2017.7963706","DOIUrl":null,"url":null,"abstract":"<p><p>Current robotic exoskeletons enforce fixed reference joint patterns during gait rehabilitation. These control methods aim to replicate normative joint kinematics but do not facilitate learning patient-specific kinematics. Trajectory-free control methods for exoskeletons are required to promote user control over joint kinematics. Our prior work on potential energy shaping provides virtual body-weight support through a trajectory-free control law, but altering only the gravitational forces does not assist the subject in accelerating/decelerating the body forward. Kinetic energy is velocity dependent and thus shaping the kinetic energy in addition to potential energy can yield greater dynamical changes in closed loop. In this paper, we generalize our previous work to achieve underactuated total energy shaping of the human body through a lower-limb exoskeleton. By shaping the fully-actuated part of the body's mass matrix, we satisfy the matching condition for different contact phases and obtain trajectory-free control laws. Simulations of a human-like biped demonstrate speed regulation in addition to body-weight support, indicating the potential clinical value of this control approach.</p>","PeriodicalId":74510,"journal":{"name":"Proceedings of the ... American Control Conference. American Control Conference","volume":"2017 ","pages":"4851-4857"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.23919/ACC.2017.7963706","citationCount":"11","resultStr":"{\"title\":\"Towards Total Energy Shaping Control of Lower-Limb Exoskeletons.\",\"authors\":\"Ge Lv,&nbsp;Robert D Gregg\",\"doi\":\"10.23919/ACC.2017.7963706\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Current robotic exoskeletons enforce fixed reference joint patterns during gait rehabilitation. These control methods aim to replicate normative joint kinematics but do not facilitate learning patient-specific kinematics. Trajectory-free control methods for exoskeletons are required to promote user control over joint kinematics. Our prior work on potential energy shaping provides virtual body-weight support through a trajectory-free control law, but altering only the gravitational forces does not assist the subject in accelerating/decelerating the body forward. Kinetic energy is velocity dependent and thus shaping the kinetic energy in addition to potential energy can yield greater dynamical changes in closed loop. In this paper, we generalize our previous work to achieve underactuated total energy shaping of the human body through a lower-limb exoskeleton. By shaping the fully-actuated part of the body's mass matrix, we satisfy the matching condition for different contact phases and obtain trajectory-free control laws. Simulations of a human-like biped demonstrate speed regulation in addition to body-weight support, indicating the potential clinical value of this control approach.</p>\",\"PeriodicalId\":74510,\"journal\":{\"name\":\"Proceedings of the ... American Control Conference. American Control Conference\",\"volume\":\"2017 \",\"pages\":\"4851-4857\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.23919/ACC.2017.7963706\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... American Control Conference. American Control Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ACC.2017.7963706\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2017/7/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... American Control Conference. American Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ACC.2017.7963706","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/7/3 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

目前的机器人外骨骼在步态康复过程中强制执行固定的参考关节模式。这些控制方法旨在复制规范的关节运动学,但不便于学习患者特定的运动学。为了促进用户对关节运动学的控制,需要外骨骼的无轨迹控制方法。我们之前关于势能塑造的工作通过无轨迹控制律提供了虚拟的体重支持,但仅改变重力并不能帮助受试者加速/减速身体向前。动能依赖于速度,因此在闭环中除了塑造势能外,还塑造动能可以产生更大的动力学变化。在本文中,我们总结了我们以前的工作,通过下肢外骨骼实现人体的欠驱动总能量整形。通过塑造物体质量矩阵的全驱动部分,满足不同接触相位的匹配条件,得到无轨迹控制律。类人两足动物的模拟实验表明,除了体重支持外,还可以调节速度,这表明了这种控制方法的潜在临床价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Towards Total Energy Shaping Control of Lower-Limb Exoskeletons.

Towards Total Energy Shaping Control of Lower-Limb Exoskeletons.

Towards Total Energy Shaping Control of Lower-Limb Exoskeletons.

Towards Total Energy Shaping Control of Lower-Limb Exoskeletons.

Current robotic exoskeletons enforce fixed reference joint patterns during gait rehabilitation. These control methods aim to replicate normative joint kinematics but do not facilitate learning patient-specific kinematics. Trajectory-free control methods for exoskeletons are required to promote user control over joint kinematics. Our prior work on potential energy shaping provides virtual body-weight support through a trajectory-free control law, but altering only the gravitational forces does not assist the subject in accelerating/decelerating the body forward. Kinetic energy is velocity dependent and thus shaping the kinetic energy in addition to potential energy can yield greater dynamical changes in closed loop. In this paper, we generalize our previous work to achieve underactuated total energy shaping of the human body through a lower-limb exoskeleton. By shaping the fully-actuated part of the body's mass matrix, we satisfy the matching condition for different contact phases and obtain trajectory-free control laws. Simulations of a human-like biped demonstrate speed regulation in addition to body-weight support, indicating the potential clinical value of this control approach.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信