用无监督纹理原型解释放射性肺气肿亚型:MESA COPD研究。

Jie Yang, Elsa D Angelini, Benjamin M Smith, John H M Austin, Eric A Hoffman, David A Bluemke, R Graham Barr, Andrew F Laine
{"title":"用无监督纹理原型解释放射性肺气肿亚型:MESA COPD研究。","authors":"Jie Yang, Elsa D Angelini, Benjamin M Smith, John H M Austin, Eric A Hoffman, David A Bluemke, R Graham Barr, Andrew F Laine","doi":"10.1007/978-3-319-61188-4_7","DOIUrl":null,"url":null,"abstract":"<p><p>Pulmonary emphysema is traditionally subcategorized into three subtypes, which have distinct radiological appearances on computed tomography (CT) and can help with the diagnosis of chronic obstructive pulmonary disease (COPD). Automated texture-based quantification of emphysema subtypes has been successfully implemented via supervised learning of these three emphysema subtypes. In this work, we demonstrate that unsupervised learning on a large heterogeneous database of CT scans can generate texture prototypes that are visually homogeneous and distinct, reproducible across subjects, and capable of predicting accurately the three standard radiological subtypes. These texture prototypes enable automated labeling of lung volumes, and open the way to new interpretations of lung CT scans with finer subtyping of emphysema.</p>","PeriodicalId":92100,"journal":{"name":"Medical computer vision and Bayesian and graphical models for biomedical imaging : MICCAI 2016 international workshop, MCV and BAMBI, Athens, Greece, October 21, 2016 : revised selected papers","volume":"2017 ","pages":"69-80"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5708576/pdf/nihms858897.pdf","citationCount":"0","resultStr":"{\"title\":\"Explaining Radiological Emphysema Subtypes with Unsupervised Texture Prototypes: MESA COPD Study.\",\"authors\":\"Jie Yang, Elsa D Angelini, Benjamin M Smith, John H M Austin, Eric A Hoffman, David A Bluemke, R Graham Barr, Andrew F Laine\",\"doi\":\"10.1007/978-3-319-61188-4_7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Pulmonary emphysema is traditionally subcategorized into three subtypes, which have distinct radiological appearances on computed tomography (CT) and can help with the diagnosis of chronic obstructive pulmonary disease (COPD). Automated texture-based quantification of emphysema subtypes has been successfully implemented via supervised learning of these three emphysema subtypes. In this work, we demonstrate that unsupervised learning on a large heterogeneous database of CT scans can generate texture prototypes that are visually homogeneous and distinct, reproducible across subjects, and capable of predicting accurately the three standard radiological subtypes. These texture prototypes enable automated labeling of lung volumes, and open the way to new interpretations of lung CT scans with finer subtyping of emphysema.</p>\",\"PeriodicalId\":92100,\"journal\":{\"name\":\"Medical computer vision and Bayesian and graphical models for biomedical imaging : MICCAI 2016 international workshop, MCV and BAMBI, Athens, Greece, October 21, 2016 : revised selected papers\",\"volume\":\"2017 \",\"pages\":\"69-80\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5708576/pdf/nihms858897.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical computer vision and Bayesian and graphical models for biomedical imaging : MICCAI 2016 international workshop, MCV and BAMBI, Athens, Greece, October 21, 2016 : revised selected papers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-3-319-61188-4_7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2017/7/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical computer vision and Bayesian and graphical models for biomedical imaging : MICCAI 2016 international workshop, MCV and BAMBI, Athens, Greece, October 21, 2016 : revised selected papers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-319-61188-4_7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/7/1 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

肺气肿传统上被分为三种亚型,它们在计算机断层扫描(CT)上有明显的放射学表现,可以帮助诊断慢性阻塞性肺疾病(COPD)。通过对这三种肺气肿亚型的监督学习,已经成功地实现了基于纹理的肺气肿亚型的自动量化。在这项工作中,我们证明了在大型异构CT扫描数据库上的无监督学习可以生成纹理原型,这些纹理原型在视觉上是均匀和独特的,在受试者之间可重复,并且能够准确预测三种标准放射亚型。这些纹理原型能够自动标记肺体积,并为肺部CT扫描的新解释开辟了道路,使肺气肿更精细的分型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Explaining Radiological Emphysema Subtypes with Unsupervised Texture Prototypes: MESA COPD Study.

Explaining Radiological Emphysema Subtypes with Unsupervised Texture Prototypes: MESA COPD Study.

Explaining Radiological Emphysema Subtypes with Unsupervised Texture Prototypes: MESA COPD Study.

Pulmonary emphysema is traditionally subcategorized into three subtypes, which have distinct radiological appearances on computed tomography (CT) and can help with the diagnosis of chronic obstructive pulmonary disease (COPD). Automated texture-based quantification of emphysema subtypes has been successfully implemented via supervised learning of these three emphysema subtypes. In this work, we demonstrate that unsupervised learning on a large heterogeneous database of CT scans can generate texture prototypes that are visually homogeneous and distinct, reproducible across subjects, and capable of predicting accurately the three standard radiological subtypes. These texture prototypes enable automated labeling of lung volumes, and open the way to new interpretations of lung CT scans with finer subtyping of emphysema.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信