基于贝叶斯惩罚样条模型的不等概率抽样有限总体比例推理。

IF 1.2 4区 数学 Q3 SOCIAL SCIENCES, MATHEMATICAL METHODS
Survey Methodology Pub Date : 2010-06-01 Epub Date: 2010-06-29
Qixuan Chen, Michael R Elliott, Roderick J A Little
{"title":"基于贝叶斯惩罚样条模型的不等概率抽样有限总体比例推理。","authors":"Qixuan Chen,&nbsp;Michael R Elliott,&nbsp;Roderick J A Little","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>We propose a Bayesian Penalized Spline Predictive (BPSP) estimator for a finite population proportion in an unequal probability sampling setting. This new method allows the probabilities of inclusion to be directly incorporated into the estimation of a population proportion, using a probit regression of the binary outcome on the penalized spline of the inclusion probabilities. The posterior predictive distribution of the population proportion is obtained using Gibbs sampling. The advantages of the BPSP estimator over the Hájek (HK), Generalized Regression (GR), and parametric model-based prediction estimators are demonstrated by simulation studies and a real example in tax auditing. Simulation studies show that the BPSP estimator is more efficient, and its 95% credible interval provides better confidence coverage with shorter average width than the HK and GR estimators, especially when the population proportion is close to zero or one or when the sample is small. Compared to linear model-based predictive estimators, the BPSP estimators are robust to model misspecification and influential observations in the sample.</p>","PeriodicalId":51191,"journal":{"name":"Survey Methodology","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2010-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5708555/pdf/nihms921230.pdf","citationCount":"0","resultStr":"{\"title\":\"Bayesian penalized spline model-based inference for finite population proportion in unequal probability sampling.\",\"authors\":\"Qixuan Chen,&nbsp;Michael R Elliott,&nbsp;Roderick J A Little\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We propose a Bayesian Penalized Spline Predictive (BPSP) estimator for a finite population proportion in an unequal probability sampling setting. This new method allows the probabilities of inclusion to be directly incorporated into the estimation of a population proportion, using a probit regression of the binary outcome on the penalized spline of the inclusion probabilities. The posterior predictive distribution of the population proportion is obtained using Gibbs sampling. The advantages of the BPSP estimator over the Hájek (HK), Generalized Regression (GR), and parametric model-based prediction estimators are demonstrated by simulation studies and a real example in tax auditing. Simulation studies show that the BPSP estimator is more efficient, and its 95% credible interval provides better confidence coverage with shorter average width than the HK and GR estimators, especially when the population proportion is close to zero or one or when the sample is small. Compared to linear model-based predictive estimators, the BPSP estimators are robust to model misspecification and influential observations in the sample.</p>\",\"PeriodicalId\":51191,\"journal\":{\"name\":\"Survey Methodology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2010-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5708555/pdf/nihms921230.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Survey Methodology\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2010/6/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"SOCIAL SCIENCES, MATHEMATICAL METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Survey Methodology","FirstCategoryId":"100","ListUrlMain":"","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2010/6/29 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"SOCIAL SCIENCES, MATHEMATICAL METHODS","Score":null,"Total":0}
引用次数: 0

摘要

针对非等概率采样条件下的有限总体比例,提出了一种贝叶斯惩罚样条预测(BPSP)估计。这种新方法允许将包含概率直接纳入总体比例的估计,使用包含概率的惩罚样条上的二进制结果的概率回归。采用吉布斯抽样法得到了总体比例的后验预测分布。通过仿真研究和税务审计实例,证明了BPSP估计器相对于Hájek (HK)、广义回归(GR)和基于参数模型的预测估计器的优势。仿真研究表明,与HK和GR估计相比,BPSP估计具有更高的效率,其95%可信区间具有更好的置信覆盖率和更短的平均宽度,特别是在总体比例接近于0或1或样本较小的情况下。与基于线性模型的预测估计器相比,BPSP估计器对样本中的错误规范和有影响的观测值具有鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Bayesian penalized spline model-based inference for finite population proportion in unequal probability sampling.

Bayesian penalized spline model-based inference for finite population proportion in unequal probability sampling.

Bayesian penalized spline model-based inference for finite population proportion in unequal probability sampling.

Bayesian penalized spline model-based inference for finite population proportion in unequal probability sampling.

We propose a Bayesian Penalized Spline Predictive (BPSP) estimator for a finite population proportion in an unequal probability sampling setting. This new method allows the probabilities of inclusion to be directly incorporated into the estimation of a population proportion, using a probit regression of the binary outcome on the penalized spline of the inclusion probabilities. The posterior predictive distribution of the population proportion is obtained using Gibbs sampling. The advantages of the BPSP estimator over the Hájek (HK), Generalized Regression (GR), and parametric model-based prediction estimators are demonstrated by simulation studies and a real example in tax auditing. Simulation studies show that the BPSP estimator is more efficient, and its 95% credible interval provides better confidence coverage with shorter average width than the HK and GR estimators, especially when the population proportion is close to zero or one or when the sample is small. Compared to linear model-based predictive estimators, the BPSP estimators are robust to model misspecification and influential observations in the sample.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Survey Methodology
Survey Methodology 数学-统计学与概率论
CiteScore
0.80
自引率
22.20%
发文量
0
审稿时长
>12 weeks
期刊介绍: The journal publishes articles dealing with various aspects of statistical development relevant to a statistical agency, such as design issues in the context of practical constraints, use of different data sources and collection techniques, total survey error, survey evaluation, research in survey methodology, time series analysis, seasonal adjustment, demographic studies, data integration, estimation and data analysis methods, and general survey systems development. The emphasis is placed on the development and evaluation of specific methodologies as applied to data collection or the data themselves.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信