{"title":"量子仿射代数表示的等变多重性。","authors":"Elie Casbi, Jian-Rong Li","doi":"10.1007/s00029-022-00805-y","DOIUrl":null,"url":null,"abstract":"<p><p>For any simply-laced type simple Lie algebra <math><mi>g</mi></math> and any height function <math><mi>ξ</mi></math> adapted to an orientation <i>Q</i> of the Dynkin diagram of <math><mi>g</mi></math> , Hernandez-Leclerc introduced a certain category <math> <msup><mrow><mi>C</mi></mrow> <mrow><mo>≤</mo> <mi>ξ</mi></mrow> </msup> </math> of representations of the quantum affine algebra <math> <mrow><msub><mi>U</mi> <mi>q</mi></msub> <mrow><mo>(</mo> <mover><mi>g</mi> <mo>^</mo></mover> <mo>)</mo></mrow> </mrow> </math> , as well as a subcategory <math><msub><mi>C</mi> <mi>Q</mi></msub> </math> of <math> <msup><mrow><mi>C</mi></mrow> <mrow><mo>≤</mo> <mi>ξ</mi></mrow> </msup> </math> whose complexified Grothendieck ring is isomorphic to the coordinate ring <math><mrow><mi>C</mi> <mo>[</mo> <mi>N</mi> <mo>]</mo></mrow> </math> of a maximal unipotent subgroup. In this paper, we define an algebraic morphism <math> <msub><mover><mi>D</mi> <mo>~</mo></mover> <mi>ξ</mi></msub> </math> on a torus <math> <msup><mrow><mi>Y</mi></mrow> <mrow><mo>≤</mo> <mi>ξ</mi></mrow> </msup> </math> containing the image of <math> <mrow><msub><mi>K</mi> <mn>0</mn></msub> <mrow><mo>(</mo> <msup><mrow><mi>C</mi></mrow> <mrow><mo>≤</mo> <mi>ξ</mi></mrow> </msup> <mo>)</mo></mrow> </mrow> </math> under the truncated <i>q</i>-character morphism. We prove that the restriction of <math> <msub><mover><mi>D</mi> <mo>~</mo></mover> <mi>ξ</mi></msub> </math> to <math> <mrow><msub><mi>K</mi> <mn>0</mn></msub> <mrow><mo>(</mo> <msub><mi>C</mi> <mi>Q</mi></msub> <mo>)</mo></mrow> </mrow> </math> coincides with the morphism <math><mover><mi>D</mi> <mo>¯</mo></mover> </math> recently introduced by Baumann-Kamnitzer-Knutson in their study of equivariant multiplicities of Mirković-Vilonen cycles. This is achieved using the T-systems satisfied by the characters of Kirillov-Reshetikhin modules in <math><msub><mi>C</mi> <mi>Q</mi></msub> </math> , as well as certain results by Brundan-Kleshchev-McNamara on the representation theory of quiver Hecke algebras. This alternative description of <math><mover><mi>D</mi> <mo>¯</mo></mover> </math> allows us to prove a conjecture by the first author on the distinguished values of <math><mover><mi>D</mi> <mo>¯</mo></mover> </math> on the flag minors of <math><mrow><mi>C</mi> <mo>[</mo> <mi>N</mi> <mo>]</mo></mrow> </math> . We also provide applications of our results from the perspective of Kang-Kashiwara-Kim-Oh's generalized Schur-Weyl duality. Finally, we use Kashiwara-Kim-Oh-Park's recent constructions to define a cluster algebra <math> <msub><mover><mi>A</mi> <mo>¯</mo></mover> <mi>Q</mi></msub> </math> as a subquotient of <math> <mrow><msub><mi>K</mi> <mn>0</mn></msub> <mrow><mo>(</mo> <msup><mrow><mi>C</mi></mrow> <mrow><mo>≤</mo> <mi>ξ</mi></mrow> </msup> <mo>)</mo></mrow> </mrow> </math> naturally containing <math><mrow><mi>C</mi> <mo>[</mo> <mi>N</mi> <mo>]</mo></mrow> </math> , and suggest the existence of an analogue of the Mirković-Vilonen basis in <math> <msub><mover><mi>A</mi> <mo>¯</mo></mover> <mi>Q</mi></msub> </math> on which the values of <math> <msub><mover><mi>D</mi> <mo>~</mo></mover> <mi>ξ</mi></msub> </math> may be interpreted as certain equivariant multiplicities.</p>","PeriodicalId":49551,"journal":{"name":"Selecta Mathematica-New Series","volume":"29 1","pages":"9"},"PeriodicalIF":1.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9707734/pdf/","citationCount":"1","resultStr":"{\"title\":\"Equivariant multiplicities via representations of quantum affine algebras.\",\"authors\":\"Elie Casbi, Jian-Rong Li\",\"doi\":\"10.1007/s00029-022-00805-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>For any simply-laced type simple Lie algebra <math><mi>g</mi></math> and any height function <math><mi>ξ</mi></math> adapted to an orientation <i>Q</i> of the Dynkin diagram of <math><mi>g</mi></math> , Hernandez-Leclerc introduced a certain category <math> <msup><mrow><mi>C</mi></mrow> <mrow><mo>≤</mo> <mi>ξ</mi></mrow> </msup> </math> of representations of the quantum affine algebra <math> <mrow><msub><mi>U</mi> <mi>q</mi></msub> <mrow><mo>(</mo> <mover><mi>g</mi> <mo>^</mo></mover> <mo>)</mo></mrow> </mrow> </math> , as well as a subcategory <math><msub><mi>C</mi> <mi>Q</mi></msub> </math> of <math> <msup><mrow><mi>C</mi></mrow> <mrow><mo>≤</mo> <mi>ξ</mi></mrow> </msup> </math> whose complexified Grothendieck ring is isomorphic to the coordinate ring <math><mrow><mi>C</mi> <mo>[</mo> <mi>N</mi> <mo>]</mo></mrow> </math> of a maximal unipotent subgroup. In this paper, we define an algebraic morphism <math> <msub><mover><mi>D</mi> <mo>~</mo></mover> <mi>ξ</mi></msub> </math> on a torus <math> <msup><mrow><mi>Y</mi></mrow> <mrow><mo>≤</mo> <mi>ξ</mi></mrow> </msup> </math> containing the image of <math> <mrow><msub><mi>K</mi> <mn>0</mn></msub> <mrow><mo>(</mo> <msup><mrow><mi>C</mi></mrow> <mrow><mo>≤</mo> <mi>ξ</mi></mrow> </msup> <mo>)</mo></mrow> </mrow> </math> under the truncated <i>q</i>-character morphism. We prove that the restriction of <math> <msub><mover><mi>D</mi> <mo>~</mo></mover> <mi>ξ</mi></msub> </math> to <math> <mrow><msub><mi>K</mi> <mn>0</mn></msub> <mrow><mo>(</mo> <msub><mi>C</mi> <mi>Q</mi></msub> <mo>)</mo></mrow> </mrow> </math> coincides with the morphism <math><mover><mi>D</mi> <mo>¯</mo></mover> </math> recently introduced by Baumann-Kamnitzer-Knutson in their study of equivariant multiplicities of Mirković-Vilonen cycles. This is achieved using the T-systems satisfied by the characters of Kirillov-Reshetikhin modules in <math><msub><mi>C</mi> <mi>Q</mi></msub> </math> , as well as certain results by Brundan-Kleshchev-McNamara on the representation theory of quiver Hecke algebras. This alternative description of <math><mover><mi>D</mi> <mo>¯</mo></mover> </math> allows us to prove a conjecture by the first author on the distinguished values of <math><mover><mi>D</mi> <mo>¯</mo></mover> </math> on the flag minors of <math><mrow><mi>C</mi> <mo>[</mo> <mi>N</mi> <mo>]</mo></mrow> </math> . We also provide applications of our results from the perspective of Kang-Kashiwara-Kim-Oh's generalized Schur-Weyl duality. Finally, we use Kashiwara-Kim-Oh-Park's recent constructions to define a cluster algebra <math> <msub><mover><mi>A</mi> <mo>¯</mo></mover> <mi>Q</mi></msub> </math> as a subquotient of <math> <mrow><msub><mi>K</mi> <mn>0</mn></msub> <mrow><mo>(</mo> <msup><mrow><mi>C</mi></mrow> <mrow><mo>≤</mo> <mi>ξ</mi></mrow> </msup> <mo>)</mo></mrow> </mrow> </math> naturally containing <math><mrow><mi>C</mi> <mo>[</mo> <mi>N</mi> <mo>]</mo></mrow> </math> , and suggest the existence of an analogue of the Mirković-Vilonen basis in <math> <msub><mover><mi>A</mi> <mo>¯</mo></mover> <mi>Q</mi></msub> </math> on which the values of <math> <msub><mover><mi>D</mi> <mo>~</mo></mover> <mi>ξ</mi></msub> </math> may be interpreted as certain equivariant multiplicities.</p>\",\"PeriodicalId\":49551,\"journal\":{\"name\":\"Selecta Mathematica-New Series\",\"volume\":\"29 1\",\"pages\":\"9\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9707734/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Selecta Mathematica-New Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00029-022-00805-y\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/11/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Selecta Mathematica-New Series","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00029-022-00805-y","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/11/17 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Equivariant multiplicities via representations of quantum affine algebras.
For any simply-laced type simple Lie algebra and any height function adapted to an orientation Q of the Dynkin diagram of , Hernandez-Leclerc introduced a certain category of representations of the quantum affine algebra , as well as a subcategory of whose complexified Grothendieck ring is isomorphic to the coordinate ring of a maximal unipotent subgroup. In this paper, we define an algebraic morphism on a torus containing the image of under the truncated q-character morphism. We prove that the restriction of to coincides with the morphism recently introduced by Baumann-Kamnitzer-Knutson in their study of equivariant multiplicities of Mirković-Vilonen cycles. This is achieved using the T-systems satisfied by the characters of Kirillov-Reshetikhin modules in , as well as certain results by Brundan-Kleshchev-McNamara on the representation theory of quiver Hecke algebras. This alternative description of allows us to prove a conjecture by the first author on the distinguished values of on the flag minors of . We also provide applications of our results from the perspective of Kang-Kashiwara-Kim-Oh's generalized Schur-Weyl duality. Finally, we use Kashiwara-Kim-Oh-Park's recent constructions to define a cluster algebra as a subquotient of naturally containing , and suggest the existence of an analogue of the Mirković-Vilonen basis in on which the values of may be interpreted as certain equivariant multiplicities.
期刊介绍:
Selecta Mathematica, New Series is a peer-reviewed journal addressed to a wide mathematical audience. It accepts well-written high quality papers in all areas of pure mathematics, and selected areas of applied mathematics. The journal especially encourages submission of papers which have the potential of opening new perspectives.