量子仿射代数表示的等变多重性。

IF 1.2 2区 数学 Q1 MATHEMATICS
Selecta Mathematica-New Series Pub Date : 2023-01-01 Epub Date: 2022-11-17 DOI:10.1007/s00029-022-00805-y
Elie Casbi, Jian-Rong Li
{"title":"量子仿射代数表示的等变多重性。","authors":"Elie Casbi,&nbsp;Jian-Rong Li","doi":"10.1007/s00029-022-00805-y","DOIUrl":null,"url":null,"abstract":"<p><p>For any simply-laced type simple Lie algebra <math><mi>g</mi></math> and any height function <math><mi>ξ</mi></math> adapted to an orientation <i>Q</i> of the Dynkin diagram of <math><mi>g</mi></math> , Hernandez-Leclerc introduced a certain category <math> <msup><mrow><mi>C</mi></mrow> <mrow><mo>≤</mo> <mi>ξ</mi></mrow> </msup> </math> of representations of the quantum affine algebra <math> <mrow><msub><mi>U</mi> <mi>q</mi></msub> <mrow><mo>(</mo> <mover><mi>g</mi> <mo>^</mo></mover> <mo>)</mo></mrow> </mrow> </math> , as well as a subcategory <math><msub><mi>C</mi> <mi>Q</mi></msub> </math> of <math> <msup><mrow><mi>C</mi></mrow> <mrow><mo>≤</mo> <mi>ξ</mi></mrow> </msup> </math> whose complexified Grothendieck ring is isomorphic to the coordinate ring <math><mrow><mi>C</mi> <mo>[</mo> <mi>N</mi> <mo>]</mo></mrow> </math> of a maximal unipotent subgroup. In this paper, we define an algebraic morphism <math> <msub><mover><mi>D</mi> <mo>~</mo></mover> <mi>ξ</mi></msub> </math> on a torus <math> <msup><mrow><mi>Y</mi></mrow> <mrow><mo>≤</mo> <mi>ξ</mi></mrow> </msup> </math> containing the image of <math> <mrow><msub><mi>K</mi> <mn>0</mn></msub> <mrow><mo>(</mo> <msup><mrow><mi>C</mi></mrow> <mrow><mo>≤</mo> <mi>ξ</mi></mrow> </msup> <mo>)</mo></mrow> </mrow> </math> under the truncated <i>q</i>-character morphism. We prove that the restriction of <math> <msub><mover><mi>D</mi> <mo>~</mo></mover> <mi>ξ</mi></msub> </math> to <math> <mrow><msub><mi>K</mi> <mn>0</mn></msub> <mrow><mo>(</mo> <msub><mi>C</mi> <mi>Q</mi></msub> <mo>)</mo></mrow> </mrow> </math> coincides with the morphism <math><mover><mi>D</mi> <mo>¯</mo></mover> </math> recently introduced by Baumann-Kamnitzer-Knutson in their study of equivariant multiplicities of Mirković-Vilonen cycles. This is achieved using the T-systems satisfied by the characters of Kirillov-Reshetikhin modules in <math><msub><mi>C</mi> <mi>Q</mi></msub> </math> , as well as certain results by Brundan-Kleshchev-McNamara on the representation theory of quiver Hecke algebras. This alternative description of <math><mover><mi>D</mi> <mo>¯</mo></mover> </math> allows us to prove a conjecture by the first author on the distinguished values of <math><mover><mi>D</mi> <mo>¯</mo></mover> </math> on the flag minors of <math><mrow><mi>C</mi> <mo>[</mo> <mi>N</mi> <mo>]</mo></mrow> </math> . We also provide applications of our results from the perspective of Kang-Kashiwara-Kim-Oh's generalized Schur-Weyl duality. Finally, we use Kashiwara-Kim-Oh-Park's recent constructions to define a cluster algebra <math> <msub><mover><mi>A</mi> <mo>¯</mo></mover> <mi>Q</mi></msub> </math> as a subquotient of <math> <mrow><msub><mi>K</mi> <mn>0</mn></msub> <mrow><mo>(</mo> <msup><mrow><mi>C</mi></mrow> <mrow><mo>≤</mo> <mi>ξ</mi></mrow> </msup> <mo>)</mo></mrow> </mrow> </math> naturally containing <math><mrow><mi>C</mi> <mo>[</mo> <mi>N</mi> <mo>]</mo></mrow> </math> , and suggest the existence of an analogue of the Mirković-Vilonen basis in <math> <msub><mover><mi>A</mi> <mo>¯</mo></mover> <mi>Q</mi></msub> </math> on which the values of <math> <msub><mover><mi>D</mi> <mo>~</mo></mover> <mi>ξ</mi></msub> </math> may be interpreted as certain equivariant multiplicities.</p>","PeriodicalId":49551,"journal":{"name":"Selecta Mathematica-New Series","volume":"29 1","pages":"9"},"PeriodicalIF":1.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9707734/pdf/","citationCount":"1","resultStr":"{\"title\":\"Equivariant multiplicities via representations of quantum affine algebras.\",\"authors\":\"Elie Casbi,&nbsp;Jian-Rong Li\",\"doi\":\"10.1007/s00029-022-00805-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>For any simply-laced type simple Lie algebra <math><mi>g</mi></math> and any height function <math><mi>ξ</mi></math> adapted to an orientation <i>Q</i> of the Dynkin diagram of <math><mi>g</mi></math> , Hernandez-Leclerc introduced a certain category <math> <msup><mrow><mi>C</mi></mrow> <mrow><mo>≤</mo> <mi>ξ</mi></mrow> </msup> </math> of representations of the quantum affine algebra <math> <mrow><msub><mi>U</mi> <mi>q</mi></msub> <mrow><mo>(</mo> <mover><mi>g</mi> <mo>^</mo></mover> <mo>)</mo></mrow> </mrow> </math> , as well as a subcategory <math><msub><mi>C</mi> <mi>Q</mi></msub> </math> of <math> <msup><mrow><mi>C</mi></mrow> <mrow><mo>≤</mo> <mi>ξ</mi></mrow> </msup> </math> whose complexified Grothendieck ring is isomorphic to the coordinate ring <math><mrow><mi>C</mi> <mo>[</mo> <mi>N</mi> <mo>]</mo></mrow> </math> of a maximal unipotent subgroup. In this paper, we define an algebraic morphism <math> <msub><mover><mi>D</mi> <mo>~</mo></mover> <mi>ξ</mi></msub> </math> on a torus <math> <msup><mrow><mi>Y</mi></mrow> <mrow><mo>≤</mo> <mi>ξ</mi></mrow> </msup> </math> containing the image of <math> <mrow><msub><mi>K</mi> <mn>0</mn></msub> <mrow><mo>(</mo> <msup><mrow><mi>C</mi></mrow> <mrow><mo>≤</mo> <mi>ξ</mi></mrow> </msup> <mo>)</mo></mrow> </mrow> </math> under the truncated <i>q</i>-character morphism. We prove that the restriction of <math> <msub><mover><mi>D</mi> <mo>~</mo></mover> <mi>ξ</mi></msub> </math> to <math> <mrow><msub><mi>K</mi> <mn>0</mn></msub> <mrow><mo>(</mo> <msub><mi>C</mi> <mi>Q</mi></msub> <mo>)</mo></mrow> </mrow> </math> coincides with the morphism <math><mover><mi>D</mi> <mo>¯</mo></mover> </math> recently introduced by Baumann-Kamnitzer-Knutson in their study of equivariant multiplicities of Mirković-Vilonen cycles. This is achieved using the T-systems satisfied by the characters of Kirillov-Reshetikhin modules in <math><msub><mi>C</mi> <mi>Q</mi></msub> </math> , as well as certain results by Brundan-Kleshchev-McNamara on the representation theory of quiver Hecke algebras. This alternative description of <math><mover><mi>D</mi> <mo>¯</mo></mover> </math> allows us to prove a conjecture by the first author on the distinguished values of <math><mover><mi>D</mi> <mo>¯</mo></mover> </math> on the flag minors of <math><mrow><mi>C</mi> <mo>[</mo> <mi>N</mi> <mo>]</mo></mrow> </math> . We also provide applications of our results from the perspective of Kang-Kashiwara-Kim-Oh's generalized Schur-Weyl duality. Finally, we use Kashiwara-Kim-Oh-Park's recent constructions to define a cluster algebra <math> <msub><mover><mi>A</mi> <mo>¯</mo></mover> <mi>Q</mi></msub> </math> as a subquotient of <math> <mrow><msub><mi>K</mi> <mn>0</mn></msub> <mrow><mo>(</mo> <msup><mrow><mi>C</mi></mrow> <mrow><mo>≤</mo> <mi>ξ</mi></mrow> </msup> <mo>)</mo></mrow> </mrow> </math> naturally containing <math><mrow><mi>C</mi> <mo>[</mo> <mi>N</mi> <mo>]</mo></mrow> </math> , and suggest the existence of an analogue of the Mirković-Vilonen basis in <math> <msub><mover><mi>A</mi> <mo>¯</mo></mover> <mi>Q</mi></msub> </math> on which the values of <math> <msub><mover><mi>D</mi> <mo>~</mo></mover> <mi>ξ</mi></msub> </math> may be interpreted as certain equivariant multiplicities.</p>\",\"PeriodicalId\":49551,\"journal\":{\"name\":\"Selecta Mathematica-New Series\",\"volume\":\"29 1\",\"pages\":\"9\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9707734/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Selecta Mathematica-New Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00029-022-00805-y\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/11/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Selecta Mathematica-New Series","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00029-022-00805-y","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/11/17 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

对于任何simply-laced类型简单李代数g和任何高度函数ξ适应一个方向问丹金图形的g, Hernandez-Leclerc介绍某一类别C≤ξ的表征量子代数仿射你问(g ^),以及一个子类C Q C≤ξ的复化Grothendieck环同构的坐标环C [N]最大的单能性的子群。在截断q-字符态射下,我们在环面Y≤ξ上定义了一个包含K 0 (C≤ξ)像的代数态射D ~ ξ。我们证明了D ~ ξ对k0 (cq)的限制与最近由Baumann-Kamnitzer-Knutson在研究Mirković-Vilonen循环的等变多重性中引入的态射D¯是一致的。这是利用cq中Kirillov-Reshetikhin模的特征所满足的t系统,以及brundan - kleshchevv - mcnamara关于颤抖Hecke代数的表示理论的某些结果来实现的。这种D¯的替代描述允许我们证明第一作者关于C [N]的flag minor上D¯的区别值的猜想。我们还从Kang-Kashiwara-Kim-Oh的广义Schur-Weyl对偶的角度给出了我们的结果的应用。最后,我们使用Kashiwara-Kim-Oh-Park最近的构造定义了聚类代数a¯Q作为自然包含C [N]的K 0 (C≤ξ)的子商,并提出了a¯Q中存在一个类似Mirković-Vilonen基的存在,在该基上D ~ ξ的值可以被解释为某些等变多重。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Equivariant multiplicities via representations of quantum affine algebras.

Equivariant multiplicities via representations of quantum affine algebras.

Equivariant multiplicities via representations of quantum affine algebras.

Equivariant multiplicities via representations of quantum affine algebras.

For any simply-laced type simple Lie algebra g and any height function ξ adapted to an orientation Q of the Dynkin diagram of g , Hernandez-Leclerc introduced a certain category C ξ of representations of the quantum affine algebra U q ( g ^ ) , as well as a subcategory C Q of C ξ whose complexified Grothendieck ring is isomorphic to the coordinate ring C [ N ] of a maximal unipotent subgroup. In this paper, we define an algebraic morphism D ~ ξ on a torus Y ξ containing the image of K 0 ( C ξ ) under the truncated q-character morphism. We prove that the restriction of D ~ ξ to K 0 ( C Q ) coincides with the morphism D ¯ recently introduced by Baumann-Kamnitzer-Knutson in their study of equivariant multiplicities of Mirković-Vilonen cycles. This is achieved using the T-systems satisfied by the characters of Kirillov-Reshetikhin modules in C Q , as well as certain results by Brundan-Kleshchev-McNamara on the representation theory of quiver Hecke algebras. This alternative description of D ¯ allows us to prove a conjecture by the first author on the distinguished values of D ¯ on the flag minors of C [ N ] . We also provide applications of our results from the perspective of Kang-Kashiwara-Kim-Oh's generalized Schur-Weyl duality. Finally, we use Kashiwara-Kim-Oh-Park's recent constructions to define a cluster algebra A ¯ Q as a subquotient of K 0 ( C ξ ) naturally containing C [ N ] , and suggest the existence of an analogue of the Mirković-Vilonen basis in A ¯ Q on which the values of D ~ ξ may be interpreted as certain equivariant multiplicities.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
7.10%
发文量
68
审稿时长
>12 weeks
期刊介绍: Selecta Mathematica, New Series is a peer-reviewed journal addressed to a wide mathematical audience. It accepts well-written high quality papers in all areas of pure mathematics, and selected areas of applied mathematics. The journal especially encourages submission of papers which have the potential of opening new perspectives.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信