Keefe T Chan, Stephen W Jones, Hailey E Brighton, Tao Bo, Shelly D Cochran, Norman E Sharpless, James E Bear
{"title":"基于球体的小鼠耳皮肤原位黑色素瘤模型的活体成像。","authors":"Keefe T Chan, Stephen W Jones, Hailey E Brighton, Tao Bo, Shelly D Cochran, Norman E Sharpless, James E Bear","doi":"10.4161/intv.25805","DOIUrl":null,"url":null,"abstract":"<p><p>Multiphoton microscopy is a powerful tool that enables the visualization of fluorescently tagged tumor cells and their stromal interactions within tissues in vivo. We have developed an orthotopic model of implanting multicellular melanoma tumor spheroids into the dermis of the mouse ear skin without the requirement for invasive surgery. Here, we demonstrate the utility of this approach to observe the primary tumor, single cell actin dynamics, and tumor-associated vasculature. These methods can be broadly applied to investigate an array of biological questions regarding tumor cell behavior in vivo.</p>","PeriodicalId":14512,"journal":{"name":"IntraVital","volume":"2 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4161/intv.25805","citationCount":"14","resultStr":"{\"title\":\"Intravital imaging of a spheroid-based orthotopic model of melanoma in the mouse ear skin.\",\"authors\":\"Keefe T Chan, Stephen W Jones, Hailey E Brighton, Tao Bo, Shelly D Cochran, Norman E Sharpless, James E Bear\",\"doi\":\"10.4161/intv.25805\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Multiphoton microscopy is a powerful tool that enables the visualization of fluorescently tagged tumor cells and their stromal interactions within tissues in vivo. We have developed an orthotopic model of implanting multicellular melanoma tumor spheroids into the dermis of the mouse ear skin without the requirement for invasive surgery. Here, we demonstrate the utility of this approach to observe the primary tumor, single cell actin dynamics, and tumor-associated vasculature. These methods can be broadly applied to investigate an array of biological questions regarding tumor cell behavior in vivo.</p>\",\"PeriodicalId\":14512,\"journal\":{\"name\":\"IntraVital\",\"volume\":\"2 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.4161/intv.25805\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IntraVital\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4161/intv.25805\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2013/4/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IntraVital","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4161/intv.25805","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2013/4/1 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Intravital imaging of a spheroid-based orthotopic model of melanoma in the mouse ear skin.
Multiphoton microscopy is a powerful tool that enables the visualization of fluorescently tagged tumor cells and their stromal interactions within tissues in vivo. We have developed an orthotopic model of implanting multicellular melanoma tumor spheroids into the dermis of the mouse ear skin without the requirement for invasive surgery. Here, we demonstrate the utility of this approach to observe the primary tumor, single cell actin dynamics, and tumor-associated vasculature. These methods can be broadly applied to investigate an array of biological questions regarding tumor cell behavior in vivo.