下载PDF
{"title":"用流式细胞术测定药物稳定拓扑异构酶II切割复合物","authors":"Marcelo de Campos Nebel, Micaela Palmitelli, Marcela González-Cid","doi":"10.1002/cpcy.21","DOIUrl":null,"url":null,"abstract":"<p>The poisoning of Topoisomerase II (Top2) has been found to be useful as a therapeutic strategy for the treatment of several tumors. The mechanism of Top2 poisons involves a drug-mediated stabilization of a Top2-DNA complex, termed Top2 cleavage complex (Top2cc), which maintains a 5′ end of DNA covalently bound to a tyrosine from Top2 through a phosphodiester group. Drug-stabilized Top2cc leads to Top2-linked-DNA breaks, which are believed to mediate their cytotoxicity. Several time-consuming or cell type-limiting assays have been used in the past to study drug-stabilized Top2cc. Here, we describe a flow cytometry-based method that allows a rapid assessment of drug-induced Top2cc, which is suitable for high throughput analysis in almost any kind of human cell. The analyses of the drug-induced Top2cc in the cell cycle context and the possibility to track its removal are additional benefits from this methodology. © 2017 by John Wiley & Sons, Inc.</p>","PeriodicalId":11020,"journal":{"name":"Current Protocols in Cytometry","volume":"81 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cpcy.21","citationCount":"1","resultStr":"{\"title\":\"Measurement of Drug-Stabilized Topoisomerase II Cleavage Complexes by Flow Cytometry\",\"authors\":\"Marcelo de Campos Nebel, Micaela Palmitelli, Marcela González-Cid\",\"doi\":\"10.1002/cpcy.21\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The poisoning of Topoisomerase II (Top2) has been found to be useful as a therapeutic strategy for the treatment of several tumors. The mechanism of Top2 poisons involves a drug-mediated stabilization of a Top2-DNA complex, termed Top2 cleavage complex (Top2cc), which maintains a 5′ end of DNA covalently bound to a tyrosine from Top2 through a phosphodiester group. Drug-stabilized Top2cc leads to Top2-linked-DNA breaks, which are believed to mediate their cytotoxicity. Several time-consuming or cell type-limiting assays have been used in the past to study drug-stabilized Top2cc. Here, we describe a flow cytometry-based method that allows a rapid assessment of drug-induced Top2cc, which is suitable for high throughput analysis in almost any kind of human cell. The analyses of the drug-induced Top2cc in the cell cycle context and the possibility to track its removal are additional benefits from this methodology. © 2017 by John Wiley & Sons, Inc.</p>\",\"PeriodicalId\":11020,\"journal\":{\"name\":\"Current Protocols in Cytometry\",\"volume\":\"81 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/cpcy.21\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Protocols in Cytometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cpcy.21\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Health Professions\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Protocols in Cytometry","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpcy.21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Health Professions","Score":null,"Total":0}
引用次数: 1
引用
批量引用