用流式细胞术测定药物稳定拓扑异构酶II切割复合物

Q1 Health Professions
Marcelo de Campos Nebel, Micaela Palmitelli, Marcela González-Cid
{"title":"用流式细胞术测定药物稳定拓扑异构酶II切割复合物","authors":"Marcelo de Campos Nebel,&nbsp;Micaela Palmitelli,&nbsp;Marcela González-Cid","doi":"10.1002/cpcy.21","DOIUrl":null,"url":null,"abstract":"<p>The poisoning of Topoisomerase II (Top2) has been found to be useful as a therapeutic strategy for the treatment of several tumors. The mechanism of Top2 poisons involves a drug-mediated stabilization of a Top2-DNA complex, termed Top2 cleavage complex (Top2cc), which maintains a 5′ end of DNA covalently bound to a tyrosine from Top2 through a phosphodiester group. Drug-stabilized Top2cc leads to Top2-linked-DNA breaks, which are believed to mediate their cytotoxicity. Several time-consuming or cell type-limiting assays have been used in the past to study drug-stabilized Top2cc. Here, we describe a flow cytometry-based method that allows a rapid assessment of drug-induced Top2cc, which is suitable for high throughput analysis in almost any kind of human cell. The analyses of the drug-induced Top2cc in the cell cycle context and the possibility to track its removal are additional benefits from this methodology. © 2017 by John Wiley &amp; Sons, Inc.</p>","PeriodicalId":11020,"journal":{"name":"Current Protocols in Cytometry","volume":"81 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cpcy.21","citationCount":"1","resultStr":"{\"title\":\"Measurement of Drug-Stabilized Topoisomerase II Cleavage Complexes by Flow Cytometry\",\"authors\":\"Marcelo de Campos Nebel,&nbsp;Micaela Palmitelli,&nbsp;Marcela González-Cid\",\"doi\":\"10.1002/cpcy.21\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The poisoning of Topoisomerase II (Top2) has been found to be useful as a therapeutic strategy for the treatment of several tumors. The mechanism of Top2 poisons involves a drug-mediated stabilization of a Top2-DNA complex, termed Top2 cleavage complex (Top2cc), which maintains a 5′ end of DNA covalently bound to a tyrosine from Top2 through a phosphodiester group. Drug-stabilized Top2cc leads to Top2-linked-DNA breaks, which are believed to mediate their cytotoxicity. Several time-consuming or cell type-limiting assays have been used in the past to study drug-stabilized Top2cc. Here, we describe a flow cytometry-based method that allows a rapid assessment of drug-induced Top2cc, which is suitable for high throughput analysis in almost any kind of human cell. The analyses of the drug-induced Top2cc in the cell cycle context and the possibility to track its removal are additional benefits from this methodology. © 2017 by John Wiley &amp; Sons, Inc.</p>\",\"PeriodicalId\":11020,\"journal\":{\"name\":\"Current Protocols in Cytometry\",\"volume\":\"81 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/cpcy.21\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Protocols in Cytometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cpcy.21\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Health Professions\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Protocols in Cytometry","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpcy.21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Health Professions","Score":null,"Total":0}
引用次数: 1

摘要

拓扑异构酶II (Top2)中毒已被发现是治疗几种肿瘤的有效治疗策略。Top2毒素的机制涉及药物介导的Top2-DNA复合物的稳定,称为Top2切割复合物(Top2cc),该复合物通过磷酸二酯基团维持与Top2酪氨酸共价结合的DNA的5 '端。药物稳定的Top2cc导致top2链dna断裂,这被认为介导了它们的细胞毒性。过去已经使用了几种耗时或限制细胞类型的测定方法来研究药物稳定的Top2cc。在这里,我们描述了一种基于流式细胞术的方法,可以快速评估药物诱导的Top2cc,该方法适用于几乎任何类型的人类细胞的高通量分析。在细胞周期背景下对药物诱导的Top2cc的分析以及跟踪其去除的可能性是该方法的额外好处。©2017 by John Wiley &儿子,Inc。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Measurement of Drug-Stabilized Topoisomerase II Cleavage Complexes by Flow Cytometry

The poisoning of Topoisomerase II (Top2) has been found to be useful as a therapeutic strategy for the treatment of several tumors. The mechanism of Top2 poisons involves a drug-mediated stabilization of a Top2-DNA complex, termed Top2 cleavage complex (Top2cc), which maintains a 5′ end of DNA covalently bound to a tyrosine from Top2 through a phosphodiester group. Drug-stabilized Top2cc leads to Top2-linked-DNA breaks, which are believed to mediate their cytotoxicity. Several time-consuming or cell type-limiting assays have been used in the past to study drug-stabilized Top2cc. Here, we describe a flow cytometry-based method that allows a rapid assessment of drug-induced Top2cc, which is suitable for high throughput analysis in almost any kind of human cell. The analyses of the drug-induced Top2cc in the cell cycle context and the possibility to track its removal are additional benefits from this methodology. © 2017 by John Wiley & Sons, Inc.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Protocols in Cytometry
Current Protocols in Cytometry Health Professions-Medical Laboratory Technology
自引率
0.00%
发文量
0
期刊介绍: Published in affiliation with the International Society for Advancement of Cytometry, Current Protocols in Cytometry is a "best practices" collection that distills and organizes the absolute latest techniques from the top cytometry labs and specialists worldwide. It is the most complete set of peer-reviewed protocols for flow and image cytometry available.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信