{"title":"线性混合效应模型中主体内和主体间变异系数的广义置信区间。","authors":"Johannes Forkman","doi":"10.1515/ijb-2016-0093","DOIUrl":null,"url":null,"abstract":"<p><p>Linear mixed-effects models are linear models with several variance components. Models with a single random-effects factor have two variance components: the random-effects variance, i. e., the inter-subject variance, and the residual error variance, i. e., the intra-subject variance. In many applications, it is practice to report variance components as coefficients of variation. The intra- and inter-subject coefficients of variation are the square roots of the corresponding variances divided by the mean. This article proposes methods for computing confidence intervals for intra- and inter-subject coefficients of variation using generalized pivotal quantities. The methods are illustrated through two examples. In the first example, precision is assessed within and between runs in a bioanalytical method validation. In the second example, variation is estimated within and between main plots in an agricultural split-plot experiment. Coverage of generalized confidence intervals is investigated through simulation and shown to be close to the nominal value.</p>","PeriodicalId":49058,"journal":{"name":"International Journal of Biostatistics","volume":"13 2","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2017-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/ijb-2016-0093","citationCount":"0","resultStr":"{\"title\":\"Generalized Confidence Intervals for Intra- and Inter-subject Coefficients of Variation in Linear Mixed-effects Models.\",\"authors\":\"Johannes Forkman\",\"doi\":\"10.1515/ijb-2016-0093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Linear mixed-effects models are linear models with several variance components. Models with a single random-effects factor have two variance components: the random-effects variance, i. e., the inter-subject variance, and the residual error variance, i. e., the intra-subject variance. In many applications, it is practice to report variance components as coefficients of variation. The intra- and inter-subject coefficients of variation are the square roots of the corresponding variances divided by the mean. This article proposes methods for computing confidence intervals for intra- and inter-subject coefficients of variation using generalized pivotal quantities. The methods are illustrated through two examples. In the first example, precision is assessed within and between runs in a bioanalytical method validation. In the second example, variation is estimated within and between main plots in an agricultural split-plot experiment. Coverage of generalized confidence intervals is investigated through simulation and shown to be close to the nominal value.</p>\",\"PeriodicalId\":49058,\"journal\":{\"name\":\"International Journal of Biostatistics\",\"volume\":\"13 2\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2017-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/ijb-2016-0093\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Biostatistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/ijb-2016-0093\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biostatistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ijb-2016-0093","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Generalized Confidence Intervals for Intra- and Inter-subject Coefficients of Variation in Linear Mixed-effects Models.
Linear mixed-effects models are linear models with several variance components. Models with a single random-effects factor have two variance components: the random-effects variance, i. e., the inter-subject variance, and the residual error variance, i. e., the intra-subject variance. In many applications, it is practice to report variance components as coefficients of variation. The intra- and inter-subject coefficients of variation are the square roots of the corresponding variances divided by the mean. This article proposes methods for computing confidence intervals for intra- and inter-subject coefficients of variation using generalized pivotal quantities. The methods are illustrated through two examples. In the first example, precision is assessed within and between runs in a bioanalytical method validation. In the second example, variation is estimated within and between main plots in an agricultural split-plot experiment. Coverage of generalized confidence intervals is investigated through simulation and shown to be close to the nominal value.
期刊介绍:
The International Journal of Biostatistics (IJB) seeks to publish new biostatistical models and methods, new statistical theory, as well as original applications of statistical methods, for important practical problems arising from the biological, medical, public health, and agricultural sciences with an emphasis on semiparametric methods. Given many alternatives to publish exist within biostatistics, IJB offers a place to publish for research in biostatistics focusing on modern methods, often based on machine-learning and other data-adaptive methodologies, as well as providing a unique reading experience that compels the author to be explicit about the statistical inference problem addressed by the paper. IJB is intended that the journal cover the entire range of biostatistics, from theoretical advances to relevant and sensible translations of a practical problem into a statistical framework. Electronic publication also allows for data and software code to be appended, and opens the door for reproducible research allowing readers to easily replicate analyses described in a paper. Both original research and review articles will be warmly received, as will articles applying sound statistical methods to practical problems.