Tooba Abbassi-Daloii, Soheil Yousefi, Eleonora de Klerk, Laurens Grossouw, Muhammad Riaz, Peter A C 't Hoen, Vered Raz
{"title":"丙氨酸扩增的PABPN1导致内含子聚腺苷化位点的利用增加。","authors":"Tooba Abbassi-Daloii, Soheil Yousefi, Eleonora de Klerk, Laurens Grossouw, Muhammad Riaz, Peter A C 't Hoen, Vered Raz","doi":"10.1038/s41514-017-0007-x","DOIUrl":null,"url":null,"abstract":"<p><p>In eukaryote genomes, the polyadenylation site marks termination of mature RNA transcripts by a poly-adenine tail. The polyadenylation site is recognized by a dynamic protein complex, among which the poly-adenine-binding protein nuclear1 plays a key role. Reduced poly-adenine-binding protein nuclear1 levels are found in aged muscles and are even lower in oculopharyngeal muscular dystrophy patients. Oculopharyngeal muscular dystrophy is a rare, late onset autosomal dominant myopathy, and is caused by an alanine expansion mutation in poly-adenine-binding protein nuclear1. Mutant poly-adenine-binding protein nuclear1 forms insoluble nuclear aggregates leading to depletion of functional poly-adenine-binding protein nuclear1 levels. In oculopharyngeal muscular dystrophy models, increased utilization of proximal polyadenylation sites has been observed in tandem 3'-untranslated regions, and most often cause gene upregulation. However, global alterations in expression profiles canonly partly be explained by polyadenylation site switches within the most distal 3'-untranslated region. Most poly-adenine signals are found at the distal 3'-untranslated region, but a significant part is also found in internal gene regions, like introns, exons, and internal 3'-untranslated regions. Here, we investigated poly-adenine-binding protein nuclear1's role in polyadenylation site utilization in internal gene regions. In the quadriceps muscle of oculopharyngeal muscular dystrophy mice expressing expPABPN1 we found significant polyadenylation site switches between gene regions in 17% of genes with polyadenylation site in multiple regions (<i>N</i> = 574; 5% False Discovery Rate). Polyadenylation site switches between gene regions were associated with differences in transcript expression levels and alterations in open reading frames. Transcripts ending at internal polyadenylation site were confirmed in tibialis anterior muscles from the same mice and in mouse muscle cell cultures overexpressing expPABPN1. The polyadenylation site switches were associated with nuclear accumulation of full-length transcripts. Our results provide further insights into the diverse roles of poly-adenine-binding protein nuclear1 in the post-transcriptional control of muscle gene expression and its relevance for oculopharyngeal muscular dystrophy pathology and muscle aging.</p>","PeriodicalId":19334,"journal":{"name":"NPJ Aging and Mechanisms of Disease","volume":" ","pages":"6"},"PeriodicalIF":5.4000,"publicationDate":"2017-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1038/s41514-017-0007-x","citationCount":"15","resultStr":"{\"title\":\"An alanine expanded PABPN1 causes increased utilization of intronic polyadenylation sites.\",\"authors\":\"Tooba Abbassi-Daloii, Soheil Yousefi, Eleonora de Klerk, Laurens Grossouw, Muhammad Riaz, Peter A C 't Hoen, Vered Raz\",\"doi\":\"10.1038/s41514-017-0007-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In eukaryote genomes, the polyadenylation site marks termination of mature RNA transcripts by a poly-adenine tail. The polyadenylation site is recognized by a dynamic protein complex, among which the poly-adenine-binding protein nuclear1 plays a key role. Reduced poly-adenine-binding protein nuclear1 levels are found in aged muscles and are even lower in oculopharyngeal muscular dystrophy patients. Oculopharyngeal muscular dystrophy is a rare, late onset autosomal dominant myopathy, and is caused by an alanine expansion mutation in poly-adenine-binding protein nuclear1. Mutant poly-adenine-binding protein nuclear1 forms insoluble nuclear aggregates leading to depletion of functional poly-adenine-binding protein nuclear1 levels. In oculopharyngeal muscular dystrophy models, increased utilization of proximal polyadenylation sites has been observed in tandem 3'-untranslated regions, and most often cause gene upregulation. However, global alterations in expression profiles canonly partly be explained by polyadenylation site switches within the most distal 3'-untranslated region. Most poly-adenine signals are found at the distal 3'-untranslated region, but a significant part is also found in internal gene regions, like introns, exons, and internal 3'-untranslated regions. Here, we investigated poly-adenine-binding protein nuclear1's role in polyadenylation site utilization in internal gene regions. In the quadriceps muscle of oculopharyngeal muscular dystrophy mice expressing expPABPN1 we found significant polyadenylation site switches between gene regions in 17% of genes with polyadenylation site in multiple regions (<i>N</i> = 574; 5% False Discovery Rate). Polyadenylation site switches between gene regions were associated with differences in transcript expression levels and alterations in open reading frames. Transcripts ending at internal polyadenylation site were confirmed in tibialis anterior muscles from the same mice and in mouse muscle cell cultures overexpressing expPABPN1. The polyadenylation site switches were associated with nuclear accumulation of full-length transcripts. Our results provide further insights into the diverse roles of poly-adenine-binding protein nuclear1 in the post-transcriptional control of muscle gene expression and its relevance for oculopharyngeal muscular dystrophy pathology and muscle aging.</p>\",\"PeriodicalId\":19334,\"journal\":{\"name\":\"NPJ Aging and Mechanisms of Disease\",\"volume\":\" \",\"pages\":\"6\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2017-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1038/s41514-017-0007-x\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NPJ Aging and Mechanisms of Disease\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s41514-017-0007-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2017/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"GERIATRICS & GERONTOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Aging and Mechanisms of Disease","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s41514-017-0007-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
An alanine expanded PABPN1 causes increased utilization of intronic polyadenylation sites.
In eukaryote genomes, the polyadenylation site marks termination of mature RNA transcripts by a poly-adenine tail. The polyadenylation site is recognized by a dynamic protein complex, among which the poly-adenine-binding protein nuclear1 plays a key role. Reduced poly-adenine-binding protein nuclear1 levels are found in aged muscles and are even lower in oculopharyngeal muscular dystrophy patients. Oculopharyngeal muscular dystrophy is a rare, late onset autosomal dominant myopathy, and is caused by an alanine expansion mutation in poly-adenine-binding protein nuclear1. Mutant poly-adenine-binding protein nuclear1 forms insoluble nuclear aggregates leading to depletion of functional poly-adenine-binding protein nuclear1 levels. In oculopharyngeal muscular dystrophy models, increased utilization of proximal polyadenylation sites has been observed in tandem 3'-untranslated regions, and most often cause gene upregulation. However, global alterations in expression profiles canonly partly be explained by polyadenylation site switches within the most distal 3'-untranslated region. Most poly-adenine signals are found at the distal 3'-untranslated region, but a significant part is also found in internal gene regions, like introns, exons, and internal 3'-untranslated regions. Here, we investigated poly-adenine-binding protein nuclear1's role in polyadenylation site utilization in internal gene regions. In the quadriceps muscle of oculopharyngeal muscular dystrophy mice expressing expPABPN1 we found significant polyadenylation site switches between gene regions in 17% of genes with polyadenylation site in multiple regions (N = 574; 5% False Discovery Rate). Polyadenylation site switches between gene regions were associated with differences in transcript expression levels and alterations in open reading frames. Transcripts ending at internal polyadenylation site were confirmed in tibialis anterior muscles from the same mice and in mouse muscle cell cultures overexpressing expPABPN1. The polyadenylation site switches were associated with nuclear accumulation of full-length transcripts. Our results provide further insights into the diverse roles of poly-adenine-binding protein nuclear1 in the post-transcriptional control of muscle gene expression and its relevance for oculopharyngeal muscular dystrophy pathology and muscle aging.
期刊介绍:
npj Aging and Mechanisms of Disease is an online open access journal that provides a forum for the world’s most important research in the fields of aging and aging-related disease. The journal publishes papers from all relevant disciplines, encouraging those that shed light on the mechanisms behind aging and the associated diseases. The journal’s scope includes, but is not restricted to, the following areas (not listed in order of preference): • cellular and molecular mechanisms of aging and aging-related diseases • interventions to affect the process of aging and longevity • homeostatic regulation and aging • age-associated complications • translational research into prevention and treatment of aging-related diseases • mechanistic bases for epidemiological aspects of aging-related disease.