肠道干细胞和祖细胞的信号传导和表观遗传机制:对隐窝稳态、可塑性和生态位的洞察。

Q1 Biochemistry, Genetics and Molecular Biology
Ryan J Smith, Abilasha Rao-Bhatia, Tae-Hee Kim
{"title":"肠道干细胞和祖细胞的信号传导和表观遗传机制:对隐窝稳态、可塑性和生态位的洞察。","authors":"Ryan J Smith,&nbsp;Abilasha Rao-Bhatia,&nbsp;Tae-Hee Kim","doi":"10.1002/wdev.281","DOIUrl":null,"url":null,"abstract":"<p><p>The rapid turnover of intestinal epithelial cells is maintained by a small number of stem cells located in pocket-like gland structures called crypts. While our understanding of the identity and function of intestinal stem cells (ISCs) has rapidly progressed, epigenetic and transcriptional regulation in crypt stem cell and progenitor pools remains an active field of investigation. Surrounded by various types of cells in the stroma, crypt progenitors display high levels of plasticity, harboring the ability to interconvert in the face of epithelial damage. Recent studies analyzing epigenetic patterns of intestinal epithelial cells have provided evidence that plasticity is maintained by a broadly permissive epigenomic state, wherein cell-lineage specification is directed through activation of signaling pathways and transcription factor (TF) expression. New studies also have shown that the ISC niche, which is comprised of surrounding epithelial and mesenchymal tissues, plays a crucial role in supporting the maintenance and differentiation of stem cells by providing contextual information in the form of signaling cascades, such as Wnt, Notch, and Hippo. These cascades ultimately govern TF expression to promote early cell-lineage decisions in both crypt stem cells and progenitors. Highlighting recent studies investigating signaling, transcriptional, and epigenetic mechanisms of intestinal epithelial cells, we will discuss the mechanisms underlying crypt homeostasis, plasticity, and niches. WIREs Dev Biol 2017, 6:e281. doi: 10.1002/wdev.281 For further resources related to this article, please visit the WIREs website.</p>","PeriodicalId":23630,"journal":{"name":"Wiley Interdisciplinary Reviews: Developmental Biology","volume":"6 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/wdev.281","citationCount":"14","resultStr":"{\"title\":\"Signaling and epigenetic mechanisms of intestinal stem cells and progenitors: insight into crypt homeostasis, plasticity, and niches.\",\"authors\":\"Ryan J Smith,&nbsp;Abilasha Rao-Bhatia,&nbsp;Tae-Hee Kim\",\"doi\":\"10.1002/wdev.281\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The rapid turnover of intestinal epithelial cells is maintained by a small number of stem cells located in pocket-like gland structures called crypts. While our understanding of the identity and function of intestinal stem cells (ISCs) has rapidly progressed, epigenetic and transcriptional regulation in crypt stem cell and progenitor pools remains an active field of investigation. Surrounded by various types of cells in the stroma, crypt progenitors display high levels of plasticity, harboring the ability to interconvert in the face of epithelial damage. Recent studies analyzing epigenetic patterns of intestinal epithelial cells have provided evidence that plasticity is maintained by a broadly permissive epigenomic state, wherein cell-lineage specification is directed through activation of signaling pathways and transcription factor (TF) expression. New studies also have shown that the ISC niche, which is comprised of surrounding epithelial and mesenchymal tissues, plays a crucial role in supporting the maintenance and differentiation of stem cells by providing contextual information in the form of signaling cascades, such as Wnt, Notch, and Hippo. These cascades ultimately govern TF expression to promote early cell-lineage decisions in both crypt stem cells and progenitors. Highlighting recent studies investigating signaling, transcriptional, and epigenetic mechanisms of intestinal epithelial cells, we will discuss the mechanisms underlying crypt homeostasis, plasticity, and niches. WIREs Dev Biol 2017, 6:e281. doi: 10.1002/wdev.281 For further resources related to this article, please visit the WIREs website.</p>\",\"PeriodicalId\":23630,\"journal\":{\"name\":\"Wiley Interdisciplinary Reviews: Developmental Biology\",\"volume\":\"6 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/wdev.281\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wiley Interdisciplinary Reviews: Developmental Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/wdev.281\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2017/6/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews: Developmental Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/wdev.281","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/6/23 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 14

摘要

肠上皮细胞的快速更新是由位于囊状腺体结构(称为隐窝)中的少量干细胞维持的。虽然我们对肠道干细胞(ISCs)的身份和功能的了解已经迅速取得进展,但隐窝干细胞和祖细胞池的表观遗传和转录调控仍然是一个活跃的研究领域。被基质中各种类型的细胞包围,隐窝祖细胞显示出高水平的可塑性,在面对上皮损伤时具有相互转化的能力。最近分析肠上皮细胞表观遗传模式的研究提供了证据,表明可塑性是由广泛允许的表观基因组状态维持的,其中细胞谱系规范是通过激活信号通路和转录因子(TF)表达来指导的。新的研究还表明,ISC生态位由周围上皮和间充质组织组成,通过以信号级联的形式提供上下文信息,如Wnt、Notch和Hippo,在支持干细胞的维持和分化中起着至关重要的作用。这些级联最终控制TF表达,促进隐窝干细胞和祖细胞的早期细胞谱系决定。重点介绍最近研究肠上皮细胞的信号、转录和表观遗传机制,我们将讨论隐窝稳态、可塑性和生态位的机制。中国生物医学工程学报,2017,26(6):991 - 991。doi: 10.1002 / wdev.281有关与本文相关的更多资源,请访问WIREs网站。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Signaling and epigenetic mechanisms of intestinal stem cells and progenitors: insight into crypt homeostasis, plasticity, and niches.

The rapid turnover of intestinal epithelial cells is maintained by a small number of stem cells located in pocket-like gland structures called crypts. While our understanding of the identity and function of intestinal stem cells (ISCs) has rapidly progressed, epigenetic and transcriptional regulation in crypt stem cell and progenitor pools remains an active field of investigation. Surrounded by various types of cells in the stroma, crypt progenitors display high levels of plasticity, harboring the ability to interconvert in the face of epithelial damage. Recent studies analyzing epigenetic patterns of intestinal epithelial cells have provided evidence that plasticity is maintained by a broadly permissive epigenomic state, wherein cell-lineage specification is directed through activation of signaling pathways and transcription factor (TF) expression. New studies also have shown that the ISC niche, which is comprised of surrounding epithelial and mesenchymal tissues, plays a crucial role in supporting the maintenance and differentiation of stem cells by providing contextual information in the form of signaling cascades, such as Wnt, Notch, and Hippo. These cascades ultimately govern TF expression to promote early cell-lineage decisions in both crypt stem cells and progenitors. Highlighting recent studies investigating signaling, transcriptional, and epigenetic mechanisms of intestinal epithelial cells, we will discuss the mechanisms underlying crypt homeostasis, plasticity, and niches. WIREs Dev Biol 2017, 6:e281. doi: 10.1002/wdev.281 For further resources related to this article, please visit the WIREs website.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊介绍: Developmental biology is concerned with the fundamental question of how a single cell, the fertilized egg, ultimately produces a complex, fully patterned adult organism. This problem is studied on many different biological levels, from the molecular to the organismal. Developed in association with the Society for Developmental Biology, WIREs Developmental Biology will provide a unique interdisciplinary forum dedicated to fostering excellence in research and education and communicating key advances in this important field. The collaborative and integrative ethos of the WIREs model will facilitate connections to related disciplines such as genetics, systems biology, bioengineering, and psychology. The topical coverage of WIREs Developmental Biology includes: Establishment of Spatial and Temporal Patterns; Gene Expression and Transcriptional Hierarchies; Signaling Pathways; Early Embryonic Development; Invertebrate Organogenesis; Vertebrate Organogenesis; Nervous System Development; Birth Defects; Adult Stem Cells, Tissue Renewal and Regeneration; Cell Types and Issues Specific to Plants; Comparative Development and Evolution; and Technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信