纵向数据分析的现代方法,能力,注意事项和注意事项。

Lin Ge, Justin X Tu, Hui Zhang, Hongyue Wang, Hua He, Douglas Gunzler
{"title":"纵向数据分析的现代方法,能力,注意事项和注意事项。","authors":"Lin Ge,&nbsp;Justin X Tu,&nbsp;Hui Zhang,&nbsp;Hongyue Wang,&nbsp;Hua He,&nbsp;Douglas Gunzler","doi":"10.11919/j.issn.1002-0829.216081","DOIUrl":null,"url":null,"abstract":"<p><p>Longitudinal studies are used in mental health research and services studies. The dominant approaches for longitudinal data analysis are the generalized linear mixed-effects models (GLMM) and the weighted generalized estimating equations (WGEE). Although both classes of models have been extensively published and widely applied, differences between and limitations about these methods are not clearly delineated and well documented. Unfortunately, some of the differences and limitations carry significant implications for reporting, comparing and interpreting research findings. In this report, we review both major approaches for longitudinal data analysis and highlight their similarities and major differences. We focus on comparison of the two classes of models in terms of model assumptions, model parameter interpretation, applicability and limitations, using both real and simulated data. We discuss caveats and cautions when applying the two different approaches to real study data.</p>","PeriodicalId":21886,"journal":{"name":"上海精神医学","volume":"28 5","pages":"293-300"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/27/4f/sap-28-293.PMC5434286.pdf","citationCount":"2","resultStr":"{\"title\":\"Modern methods for longitudinal data analysis, capabilities, caveats and cautions.\",\"authors\":\"Lin Ge,&nbsp;Justin X Tu,&nbsp;Hui Zhang,&nbsp;Hongyue Wang,&nbsp;Hua He,&nbsp;Douglas Gunzler\",\"doi\":\"10.11919/j.issn.1002-0829.216081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Longitudinal studies are used in mental health research and services studies. The dominant approaches for longitudinal data analysis are the generalized linear mixed-effects models (GLMM) and the weighted generalized estimating equations (WGEE). Although both classes of models have been extensively published and widely applied, differences between and limitations about these methods are not clearly delineated and well documented. Unfortunately, some of the differences and limitations carry significant implications for reporting, comparing and interpreting research findings. In this report, we review both major approaches for longitudinal data analysis and highlight their similarities and major differences. We focus on comparison of the two classes of models in terms of model assumptions, model parameter interpretation, applicability and limitations, using both real and simulated data. We discuss caveats and cautions when applying the two different approaches to real study data.</p>\",\"PeriodicalId\":21886,\"journal\":{\"name\":\"上海精神医学\",\"volume\":\"28 5\",\"pages\":\"293-300\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/27/4f/sap-28-293.PMC5434286.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"上海精神医学\",\"FirstCategoryId\":\"95\",\"ListUrlMain\":\"https://doi.org/10.11919/j.issn.1002-0829.216081\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"上海精神医学","FirstCategoryId":"95","ListUrlMain":"https://doi.org/10.11919/j.issn.1002-0829.216081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

纵向研究用于心理健康研究和服务研究。纵向数据分析的主要方法是广义线性混合效应模型(GLMM)和加权广义估计方程(WGEE)。尽管这两类模型都已被广泛发表和应用,但这些方法之间的差异和局限性并没有得到清楚的描述和良好的记录。不幸的是,一些差异和限制对报告、比较和解释研究结果产生了重大影响。在本报告中,我们回顾了两种主要的纵向数据分析方法,并强调了它们的相似之处和主要差异。我们重点比较了两类模型在模型假设、模型参数解释、适用性和局限性方面的差异,并使用了真实和模拟数据。我们讨论了将这两种不同的方法应用于实际研究数据时需要注意的事项。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Modern methods for longitudinal data analysis, capabilities, caveats and cautions.

Modern methods for longitudinal data analysis, capabilities, caveats and cautions.

Modern methods for longitudinal data analysis, capabilities, caveats and cautions.

Modern methods for longitudinal data analysis, capabilities, caveats and cautions.

Longitudinal studies are used in mental health research and services studies. The dominant approaches for longitudinal data analysis are the generalized linear mixed-effects models (GLMM) and the weighted generalized estimating equations (WGEE). Although both classes of models have been extensively published and widely applied, differences between and limitations about these methods are not clearly delineated and well documented. Unfortunately, some of the differences and limitations carry significant implications for reporting, comparing and interpreting research findings. In this report, we review both major approaches for longitudinal data analysis and highlight their similarities and major differences. We focus on comparison of the two classes of models in terms of model assumptions, model parameter interpretation, applicability and limitations, using both real and simulated data. We discuss caveats and cautions when applying the two different approaches to real study data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
2341
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信