大数据分析与Datalog查询Spark。

Alexander Shkapsky, Mohan Yang, Matteo Interlandi, Hsuan Chiu, Tyson Condie, Carlo Zaniolo
{"title":"大数据分析与Datalog查询Spark。","authors":"Alexander Shkapsky,&nbsp;Mohan Yang,&nbsp;Matteo Interlandi,&nbsp;Hsuan Chiu,&nbsp;Tyson Condie,&nbsp;Carlo Zaniolo","doi":"10.1145/2882903.2915229","DOIUrl":null,"url":null,"abstract":"<p><p>There is great interest in exploiting the opportunity provided by cloud computing platforms for large-scale analytics. Among these platforms, Apache Spark is growing in popularity for machine learning and graph analytics. Developing efficient complex analytics in Spark requires deep understanding of both the algorithm at hand and the Spark API or subsystem APIs (e.g., Spark SQL, GraphX). Our BigDatalog system addresses the problem by providing concise declarative specification of complex queries amenable to efficient evaluation. Towards this goal, we propose compilation and optimization techniques that tackle the important problem of efficiently supporting recursion in Spark. We perform an experimental comparison with other state-of-the-art large-scale Datalog systems and verify the efficacy of our techniques and effectiveness of Spark in supporting Datalog-based analytics.</p>","PeriodicalId":87344,"journal":{"name":"Proceedings. ACM-SIGMOD International Conference on Management of Data","volume":"2016 ","pages":"1135-1149"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1145/2882903.2915229","citationCount":"133","resultStr":"{\"title\":\"Big Data Analytics with Datalog Queries on Spark.\",\"authors\":\"Alexander Shkapsky,&nbsp;Mohan Yang,&nbsp;Matteo Interlandi,&nbsp;Hsuan Chiu,&nbsp;Tyson Condie,&nbsp;Carlo Zaniolo\",\"doi\":\"10.1145/2882903.2915229\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>There is great interest in exploiting the opportunity provided by cloud computing platforms for large-scale analytics. Among these platforms, Apache Spark is growing in popularity for machine learning and graph analytics. Developing efficient complex analytics in Spark requires deep understanding of both the algorithm at hand and the Spark API or subsystem APIs (e.g., Spark SQL, GraphX). Our BigDatalog system addresses the problem by providing concise declarative specification of complex queries amenable to efficient evaluation. Towards this goal, we propose compilation and optimization techniques that tackle the important problem of efficiently supporting recursion in Spark. We perform an experimental comparison with other state-of-the-art large-scale Datalog systems and verify the efficacy of our techniques and effectiveness of Spark in supporting Datalog-based analytics.</p>\",\"PeriodicalId\":87344,\"journal\":{\"name\":\"Proceedings. ACM-SIGMOD International Conference on Management of Data\",\"volume\":\"2016 \",\"pages\":\"1135-1149\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1145/2882903.2915229\",\"citationCount\":\"133\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. ACM-SIGMOD International Conference on Management of Data\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2882903.2915229\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. ACM-SIGMOD International Conference on Management of Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2882903.2915229","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 133

摘要

人们对利用云计算平台提供的机会进行大规模分析非常感兴趣。在这些平台中,Apache Spark在机器学习和图形分析方面越来越受欢迎。在Spark中开发高效的复杂分析需要对手头的算法和Spark API或子系统API(例如Spark SQL, GraphX)有深刻的理解。我们的BigDatalog系统解决了这个问题,它为复杂查询提供了简洁的声明性规范,可以进行高效的求值。为了实现这个目标,我们提出了编译和优化技术来解决Spark中有效支持递归的重要问题。我们与其他最先进的大型Datalog系统进行了实验比较,并验证了我们的技术的有效性和Spark在支持基于Datalog的分析方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Big Data Analytics with Datalog Queries on Spark.

Big Data Analytics with Datalog Queries on Spark.

Big Data Analytics with Datalog Queries on Spark.

Big Data Analytics with Datalog Queries on Spark.

There is great interest in exploiting the opportunity provided by cloud computing platforms for large-scale analytics. Among these platforms, Apache Spark is growing in popularity for machine learning and graph analytics. Developing efficient complex analytics in Spark requires deep understanding of both the algorithm at hand and the Spark API or subsystem APIs (e.g., Spark SQL, GraphX). Our BigDatalog system addresses the problem by providing concise declarative specification of complex queries amenable to efficient evaluation. Towards this goal, we propose compilation and optimization techniques that tackle the important problem of efficiently supporting recursion in Spark. We perform an experimental comparison with other state-of-the-art large-scale Datalog systems and verify the efficacy of our techniques and effectiveness of Spark in supporting Datalog-based analytics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信