基于gpu的散弹枪随机搜索高斯图形模型的Dirichlet过程混合。

IF 1.8
Chiranjit Mukherjee, Abel Rodriguez
{"title":"基于gpu的散弹枪随机搜索高斯图形模型的Dirichlet过程混合。","authors":"Chiranjit Mukherjee,&nbsp;Abel Rodriguez","doi":"10.1080/10618600.2015.1037883","DOIUrl":null,"url":null,"abstract":"<p><p>Gaussian graphical models are popular for modeling high-dimensional multivariate data with sparse conditional dependencies. A mixture of Gaussian graphical models extends this model to the more realistic scenario where observations come from a heterogenous population composed of a small number of homogeneous sub-groups. In this paper we present a novel stochastic search algorithm for finding the posterior mode of high-dimensional Dirichlet process mixtures of decomposable Gaussian graphical models. Further, we investigate how to harness the massive thread-parallelization capabilities of graphical processing units to accelerate computation. The computational advantages of our algorithms are demonstrated with various simulated data examples in which we compare our stochastic search with a Markov chain Monte Carlo algorithm in moderate dimensional data examples. These experiments show that our stochastic search largely outperforms the Markov chain Monte Carlo algorithm in terms of computing-times and in terms of the quality of the posterior mode discovered. Finally, we analyze a gene expression dataset in which Markov chain Monte Carlo algorithms are too slow to be practically useful.</p>","PeriodicalId":520666,"journal":{"name":"Journal of computational and graphical statistics : a joint publication of American Statistical Association, Institute of Mathematical Statistics, Interface Foundation of North America","volume":" ","pages":"762-788"},"PeriodicalIF":1.8000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/10618600.2015.1037883","citationCount":"6","resultStr":"{\"title\":\"GPU-powered Shotgun Stochastic Search for Dirichlet process mixtures of Gaussian Graphical Models.\",\"authors\":\"Chiranjit Mukherjee,&nbsp;Abel Rodriguez\",\"doi\":\"10.1080/10618600.2015.1037883\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Gaussian graphical models are popular for modeling high-dimensional multivariate data with sparse conditional dependencies. A mixture of Gaussian graphical models extends this model to the more realistic scenario where observations come from a heterogenous population composed of a small number of homogeneous sub-groups. In this paper we present a novel stochastic search algorithm for finding the posterior mode of high-dimensional Dirichlet process mixtures of decomposable Gaussian graphical models. Further, we investigate how to harness the massive thread-parallelization capabilities of graphical processing units to accelerate computation. The computational advantages of our algorithms are demonstrated with various simulated data examples in which we compare our stochastic search with a Markov chain Monte Carlo algorithm in moderate dimensional data examples. These experiments show that our stochastic search largely outperforms the Markov chain Monte Carlo algorithm in terms of computing-times and in terms of the quality of the posterior mode discovered. Finally, we analyze a gene expression dataset in which Markov chain Monte Carlo algorithms are too slow to be practically useful.</p>\",\"PeriodicalId\":520666,\"journal\":{\"name\":\"Journal of computational and graphical statistics : a joint publication of American Statistical Association, Institute of Mathematical Statistics, Interface Foundation of North America\",\"volume\":\" \",\"pages\":\"762-788\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2016-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/10618600.2015.1037883\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of computational and graphical statistics : a joint publication of American Statistical Association, Institute of Mathematical Statistics, Interface Foundation of North America\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/10618600.2015.1037883\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2016/8/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of computational and graphical statistics : a joint publication of American Statistical Association, Institute of Mathematical Statistics, Interface Foundation of North America","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/10618600.2015.1037883","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2016/8/5 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

高斯图模型在对具有稀疏条件依赖关系的高维多变量数据建模方面非常流行。混合高斯图形模型将该模型扩展到更现实的情况,即观察结果来自由少量同质子群体组成的异质群体。本文提出了一种新的随机搜索算法,用于寻找可分解高斯图模型的高维狄利克雷过程混合物的后验模态。此外,我们还研究了如何利用图形处理单元的大规模线程并行化能力来加速计算。通过各种模拟数据实例,我们将随机搜索与马尔可夫链蒙特卡罗算法在中等维数据实例中的比较,证明了我们算法的计算优势。这些实验表明,我们的随机搜索在计算时间和发现的后验模式质量方面大大优于马尔科夫链蒙特卡罗算法。最后,我们分析了一个基因表达数据集,其中马尔可夫链蒙特卡罗算法太慢而无法实际使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

GPU-powered Shotgun Stochastic Search for Dirichlet process mixtures of Gaussian Graphical Models.

GPU-powered Shotgun Stochastic Search for Dirichlet process mixtures of Gaussian Graphical Models.

GPU-powered Shotgun Stochastic Search for Dirichlet process mixtures of Gaussian Graphical Models.

GPU-powered Shotgun Stochastic Search for Dirichlet process mixtures of Gaussian Graphical Models.

Gaussian graphical models are popular for modeling high-dimensional multivariate data with sparse conditional dependencies. A mixture of Gaussian graphical models extends this model to the more realistic scenario where observations come from a heterogenous population composed of a small number of homogeneous sub-groups. In this paper we present a novel stochastic search algorithm for finding the posterior mode of high-dimensional Dirichlet process mixtures of decomposable Gaussian graphical models. Further, we investigate how to harness the massive thread-parallelization capabilities of graphical processing units to accelerate computation. The computational advantages of our algorithms are demonstrated with various simulated data examples in which we compare our stochastic search with a Markov chain Monte Carlo algorithm in moderate dimensional data examples. These experiments show that our stochastic search largely outperforms the Markov chain Monte Carlo algorithm in terms of computing-times and in terms of the quality of the posterior mode discovered. Finally, we analyze a gene expression dataset in which Markov chain Monte Carlo algorithms are too slow to be practically useful.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信