{"title":"大数据,小样本。","authors":"Inna Gerlovina, Mark J van der Laan, Alan Hubbard","doi":"10.1515/ijb-2017-0012","DOIUrl":null,"url":null,"abstract":"<p><p>Multiple comparisons and small sample size, common characteristics of many types of \"Big Data\" including those that are produced by genomic studies, present specific challenges that affect reliability of inference. Use of multiple testing procedures necessitates calculation of very small tail probabilities of a test statistic distribution. Results based on large deviation theory provide a formal condition that is necessary to guarantee error rate control given practical sample sizes, linking the number of tests and the sample size; this condition, however, is rarely satisfied. Using methods that are based on Edgeworth expansions (relying especially on the work of Peter Hall), we explore the impact of departures of sampling distributions from typical assumptions on actual error rates. Our investigation illustrates how far the actual error rates can be from the declared nominal levels, suggesting potentially wide-spread problems with error rate control, specifically excessive false positives. This is an important factor that contributes to \"reproducibility crisis\". We also review some other commonly used methods (such as permutation and methods based on finite sampling inequalities) in their application to multiple testing/small sample data. We point out that Edgeworth expansions, providing higher order approximations to the sampling distribution, offer a promising direction for data analysis that could improve reliability of studies relying on large numbers of comparisons with modest sample sizes.</p>","PeriodicalId":49058,"journal":{"name":"International Journal of Biostatistics","volume":"13 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2017-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/ijb-2017-0012","citationCount":"4","resultStr":"{\"title\":\"Big Data, Small Sample.\",\"authors\":\"Inna Gerlovina, Mark J van der Laan, Alan Hubbard\",\"doi\":\"10.1515/ijb-2017-0012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Multiple comparisons and small sample size, common characteristics of many types of \\\"Big Data\\\" including those that are produced by genomic studies, present specific challenges that affect reliability of inference. Use of multiple testing procedures necessitates calculation of very small tail probabilities of a test statistic distribution. Results based on large deviation theory provide a formal condition that is necessary to guarantee error rate control given practical sample sizes, linking the number of tests and the sample size; this condition, however, is rarely satisfied. Using methods that are based on Edgeworth expansions (relying especially on the work of Peter Hall), we explore the impact of departures of sampling distributions from typical assumptions on actual error rates. Our investigation illustrates how far the actual error rates can be from the declared nominal levels, suggesting potentially wide-spread problems with error rate control, specifically excessive false positives. This is an important factor that contributes to \\\"reproducibility crisis\\\". We also review some other commonly used methods (such as permutation and methods based on finite sampling inequalities) in their application to multiple testing/small sample data. We point out that Edgeworth expansions, providing higher order approximations to the sampling distribution, offer a promising direction for data analysis that could improve reliability of studies relying on large numbers of comparisons with modest sample sizes.</p>\",\"PeriodicalId\":49058,\"journal\":{\"name\":\"International Journal of Biostatistics\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2017-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/ijb-2017-0012\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Biostatistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/ijb-2017-0012\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biostatistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ijb-2017-0012","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Multiple comparisons and small sample size, common characteristics of many types of "Big Data" including those that are produced by genomic studies, present specific challenges that affect reliability of inference. Use of multiple testing procedures necessitates calculation of very small tail probabilities of a test statistic distribution. Results based on large deviation theory provide a formal condition that is necessary to guarantee error rate control given practical sample sizes, linking the number of tests and the sample size; this condition, however, is rarely satisfied. Using methods that are based on Edgeworth expansions (relying especially on the work of Peter Hall), we explore the impact of departures of sampling distributions from typical assumptions on actual error rates. Our investigation illustrates how far the actual error rates can be from the declared nominal levels, suggesting potentially wide-spread problems with error rate control, specifically excessive false positives. This is an important factor that contributes to "reproducibility crisis". We also review some other commonly used methods (such as permutation and methods based on finite sampling inequalities) in their application to multiple testing/small sample data. We point out that Edgeworth expansions, providing higher order approximations to the sampling distribution, offer a promising direction for data analysis that could improve reliability of studies relying on large numbers of comparisons with modest sample sizes.
期刊介绍:
The International Journal of Biostatistics (IJB) seeks to publish new biostatistical models and methods, new statistical theory, as well as original applications of statistical methods, for important practical problems arising from the biological, medical, public health, and agricultural sciences with an emphasis on semiparametric methods. Given many alternatives to publish exist within biostatistics, IJB offers a place to publish for research in biostatistics focusing on modern methods, often based on machine-learning and other data-adaptive methodologies, as well as providing a unique reading experience that compels the author to be explicit about the statistical inference problem addressed by the paper. IJB is intended that the journal cover the entire range of biostatistics, from theoretical advances to relevant and sensible translations of a practical problem into a statistical framework. Electronic publication also allows for data and software code to be appended, and opens the door for reproducible research allowing readers to easily replicate analyses described in a paper. Both original research and review articles will be warmly received, as will articles applying sound statistical methods to practical problems.