利用三维姿态进行基于模型的食物体积估算。

Chang Xu, Ye He, Nitin Khanna, Carol J Boushey, Edward J Delp
{"title":"利用三维姿态进行基于模型的食物体积估算。","authors":"Chang Xu, Ye He, Nitin Khanna, Carol J Boushey, Edward J Delp","doi":"10.1109/ICIP.2013.6738522","DOIUrl":null,"url":null,"abstract":"<p><p>We are developing a dietary assessment system to automatically identify and quantify foods and beverages consumed by analyzing meal images captured with a mobile device. After food items are segmented and identified, accurately estimating the volume of the food in the image is important for determining the nutrient content of the food. In this paper, we proposed a novel food portion size estimation method for rigid food items using a single image. First, we create a 3D graphical model during the training step using 3D reconstruction from multiple views. Then, for each food image, we determine the translation and elevation parameters of each of the food items, which are relative to the camera coordinate through camera calibration. Using these geometric parameters we project the pre-built 3D model of each food item back to the image plane. Subsequently, the remaining degrees-of-freedom (DOF) for the final pose is estimated by image similarity measure. The experimental results of our volume estimation method for four food categories validate the accuracy and reliability of our model-based approach.</p>","PeriodicalId":74572,"journal":{"name":"Proceedings. International Conference on Image Processing","volume":"2013 ","pages":"2534-2538"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5448795/pdf/nihms823614.pdf","citationCount":"0","resultStr":"{\"title\":\"MODEL-BASED FOOD VOLUME ESTIMATION USING 3D POSE.\",\"authors\":\"Chang Xu, Ye He, Nitin Khanna, Carol J Boushey, Edward J Delp\",\"doi\":\"10.1109/ICIP.2013.6738522\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We are developing a dietary assessment system to automatically identify and quantify foods and beverages consumed by analyzing meal images captured with a mobile device. After food items are segmented and identified, accurately estimating the volume of the food in the image is important for determining the nutrient content of the food. In this paper, we proposed a novel food portion size estimation method for rigid food items using a single image. First, we create a 3D graphical model during the training step using 3D reconstruction from multiple views. Then, for each food image, we determine the translation and elevation parameters of each of the food items, which are relative to the camera coordinate through camera calibration. Using these geometric parameters we project the pre-built 3D model of each food item back to the image plane. Subsequently, the remaining degrees-of-freedom (DOF) for the final pose is estimated by image similarity measure. The experimental results of our volume estimation method for four food categories validate the accuracy and reliability of our model-based approach.</p>\",\"PeriodicalId\":74572,\"journal\":{\"name\":\"Proceedings. International Conference on Image Processing\",\"volume\":\"2013 \",\"pages\":\"2534-2538\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5448795/pdf/nihms823614.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. International Conference on Image Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.2013.6738522\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2014/2/13 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. International Conference on Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2013.6738522","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2014/2/13 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们正在开发一种膳食评估系统,通过分析用移动设备拍摄的膳食图像,自动识别和量化所摄入的食物和饮料。在对食物进行分割和识别后,准确估计图像中食物的体积对于确定食物的营养成分非常重要。在本文中,我们提出了一种新颖的食物份量估算方法,可使用单张图像对刚性食物进行估算。首先,我们在训练步骤中利用多视图三维重建技术创建了一个三维图形模型。然后,针对每张食物图像,我们确定每种食物的平移和仰角参数,这些参数通过相机校准与相机坐标相对应。利用这些几何参数,我们将每个食品的预建三维模型投影回图像平面。随后,通过图像相似度测量来估算最终姿势的剩余自由度(DOF)。我们对四类食品的体积估算方法的实验结果验证了我们基于模型的方法的准确性和可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MODEL-BASED FOOD VOLUME ESTIMATION USING 3D POSE.

We are developing a dietary assessment system to automatically identify and quantify foods and beverages consumed by analyzing meal images captured with a mobile device. After food items are segmented and identified, accurately estimating the volume of the food in the image is important for determining the nutrient content of the food. In this paper, we proposed a novel food portion size estimation method for rigid food items using a single image. First, we create a 3D graphical model during the training step using 3D reconstruction from multiple views. Then, for each food image, we determine the translation and elevation parameters of each of the food items, which are relative to the camera coordinate through camera calibration. Using these geometric parameters we project the pre-built 3D model of each food item back to the image plane. Subsequently, the remaining degrees-of-freedom (DOF) for the final pose is estimated by image similarity measure. The experimental results of our volume estimation method for four food categories validate the accuracy and reliability of our model-based approach.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信