基于上下文的食物图像分析。

Ye He, Chang Xu, Nitin Khanna, Carol J Boushey, Edward J Delp
{"title":"基于上下文的食物图像分析。","authors":"Ye He,&nbsp;Chang Xu,&nbsp;Nitin Khanna,&nbsp;Carol J Boushey,&nbsp;Edward J Delp","doi":"10.1109/ICIP.2013.6738566","DOIUrl":null,"url":null,"abstract":"<p><p>We are developing a dietary assessment system that records daily food intake through the use of food images. Recognizing food in an image is difficult due to large visual variance with respect to eating or preparation conditions. This task becomes even more challenging when different foods have similar visual appearance. In this paper we propose to incorporate two types of contextual dietary information, food co-occurrence patterns and personalized learning models, in food image analysis to reduce ambiguity in food visual appearance and improve food recognition accuracy. We evaluate our model on 1453 food images acquired by 45 participants in natural eating conditions. The result shows that incorporating contextual dietary information improves the food categorization accuracy by about 10%.</p>","PeriodicalId":74572,"journal":{"name":"Proceedings. International Conference on Image Processing","volume":"2013 ","pages":"2748-2752"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/ICIP.2013.6738566","citationCount":"15","resultStr":"{\"title\":\"CONTEXT BASED FOOD IMAGE ANALYSIS.\",\"authors\":\"Ye He,&nbsp;Chang Xu,&nbsp;Nitin Khanna,&nbsp;Carol J Boushey,&nbsp;Edward J Delp\",\"doi\":\"10.1109/ICIP.2013.6738566\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We are developing a dietary assessment system that records daily food intake through the use of food images. Recognizing food in an image is difficult due to large visual variance with respect to eating or preparation conditions. This task becomes even more challenging when different foods have similar visual appearance. In this paper we propose to incorporate two types of contextual dietary information, food co-occurrence patterns and personalized learning models, in food image analysis to reduce ambiguity in food visual appearance and improve food recognition accuracy. We evaluate our model on 1453 food images acquired by 45 participants in natural eating conditions. The result shows that incorporating contextual dietary information improves the food categorization accuracy by about 10%.</p>\",\"PeriodicalId\":74572,\"journal\":{\"name\":\"Proceedings. International Conference on Image Processing\",\"volume\":\"2013 \",\"pages\":\"2748-2752\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/ICIP.2013.6738566\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. International Conference on Image Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.2013.6738566\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2014/2/13 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. International Conference on Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2013.6738566","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2014/2/13 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

我们正在开发一种饮食评估系统,通过使用食物图像来记录每天的食物摄入量。在图像中识别食物是困难的,因为在进食或准备条件方面有很大的视觉差异。当不同的食物具有相似的视觉外观时,这项任务变得更加具有挑战性。本文提出将食物共现模式和个性化学习模型两类情境饮食信息纳入食物图像分析,以减少食物视觉外观的模糊性,提高食物识别的准确性。我们对45名参与者在自然饮食条件下获得的1453张食物图像进行了评估。结果表明,结合上下文饮食信息可将食物分类准确率提高约10%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CONTEXT BASED FOOD IMAGE ANALYSIS.

We are developing a dietary assessment system that records daily food intake through the use of food images. Recognizing food in an image is difficult due to large visual variance with respect to eating or preparation conditions. This task becomes even more challenging when different foods have similar visual appearance. In this paper we propose to incorporate two types of contextual dietary information, food co-occurrence patterns and personalized learning models, in food image analysis to reduce ambiguity in food visual appearance and improve food recognition accuracy. We evaluate our model on 1453 food images acquired by 45 participants in natural eating conditions. The result shows that incorporating contextual dietary information improves the food categorization accuracy by about 10%.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信