基于分形和局部梯度信息的食物纹理描述符。

Marc Bosch, Fengqing Zhu, Nitin Khanna, Carol J Boushey, Edward J Delp
{"title":"基于分形和局部梯度信息的食物纹理描述符。","authors":"Marc Bosch,&nbsp;Fengqing Zhu,&nbsp;Nitin Khanna,&nbsp;Carol J Boushey,&nbsp;Edward J Delp","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>This work is motivated by the desire to use image analysis methods to identify and characterize images of food items to aid in dietary assessment. This paper introduces three texture descriptors for texture classification that can be used to classify images of food. Two are based on the multifractal analysis, namely, entropy-based categorization and fractal dimension estimation (EFD), and a Gabor-based image decomposition and fractal dimension estimation (GFD). Our third texture descriptor is based on the spatial relationship of gradient orientations (GOSDM), by obtaining the occurrence rate of pairs of gradient orientations at different neighborhood scales. The proposed methods are evaluated in texture classification and food categorization tasks using the entire Brodatz database and a customized food dataset with a wide variety of textures. Results show that for food categorization our methods consistently outperform several widely used techniques for both texture and object categorization.</p>","PeriodicalId":87340,"journal":{"name":"Proceedings of the ... European Signal Processing Conference (EUSIPCO). EUSIPCO (Conference)","volume":"2011 ","pages":"764-768"},"PeriodicalIF":0.0000,"publicationDate":"2011-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5448986/pdf/nihms824777.pdf","citationCount":"0","resultStr":"{\"title\":\"FOOD TEXTURE DESCRIPTORS BASED ON FRACTAL AND LOCAL GRADIENT INFORMATION.\",\"authors\":\"Marc Bosch,&nbsp;Fengqing Zhu,&nbsp;Nitin Khanna,&nbsp;Carol J Boushey,&nbsp;Edward J Delp\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This work is motivated by the desire to use image analysis methods to identify and characterize images of food items to aid in dietary assessment. This paper introduces three texture descriptors for texture classification that can be used to classify images of food. Two are based on the multifractal analysis, namely, entropy-based categorization and fractal dimension estimation (EFD), and a Gabor-based image decomposition and fractal dimension estimation (GFD). Our third texture descriptor is based on the spatial relationship of gradient orientations (GOSDM), by obtaining the occurrence rate of pairs of gradient orientations at different neighborhood scales. The proposed methods are evaluated in texture classification and food categorization tasks using the entire Brodatz database and a customized food dataset with a wide variety of textures. Results show that for food categorization our methods consistently outperform several widely used techniques for both texture and object categorization.</p>\",\"PeriodicalId\":87340,\"journal\":{\"name\":\"Proceedings of the ... European Signal Processing Conference (EUSIPCO). EUSIPCO (Conference)\",\"volume\":\"2011 \",\"pages\":\"764-768\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5448986/pdf/nihms824777.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... European Signal Processing Conference (EUSIPCO). EUSIPCO (Conference)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2015/4/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... European Signal Processing Conference (EUSIPCO). EUSIPCO (Conference)","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2015/4/2 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这项工作的动机是希望使用图像分析方法来识别和表征食物的图像,以帮助饮食评估。本文介绍了三种用于纹理分类的纹理描述符,它们可以用于食物图像的分类。两种是基于多重分形分析,即基于熵的分类和分形维数估计(EFD),以及基于gabor的图像分解和分形维数估计(GFD)。我们的第三个纹理描述符基于梯度方向的空间关系(GOSDM),通过获取不同邻域尺度梯度方向对的出现率。使用整个Brodatz数据库和具有多种纹理的定制食品数据集,对所提出的方法在纹理分类和食品分类任务中进行了评估。结果表明,对于食物分类,我们的方法始终优于几种广泛使用的纹理和物体分类技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
FOOD TEXTURE DESCRIPTORS BASED ON FRACTAL AND LOCAL GRADIENT INFORMATION.

This work is motivated by the desire to use image analysis methods to identify and characterize images of food items to aid in dietary assessment. This paper introduces three texture descriptors for texture classification that can be used to classify images of food. Two are based on the multifractal analysis, namely, entropy-based categorization and fractal dimension estimation (EFD), and a Gabor-based image decomposition and fractal dimension estimation (GFD). Our third texture descriptor is based on the spatial relationship of gradient orientations (GOSDM), by obtaining the occurrence rate of pairs of gradient orientations at different neighborhood scales. The proposed methods are evaluated in texture classification and food categorization tasks using the entire Brodatz database and a customized food dataset with a wide variety of textures. Results show that for food categorization our methods consistently outperform several widely used techniques for both texture and object categorization.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信