交互式可视化图形查询。

Robert Pienta, Shamkant Navathe, Acar Tamersoy, Hanghang Tong, Alex Endert, Duen Horng Chau
{"title":"交互式可视化图形查询。","authors":"Robert Pienta,&nbsp;Shamkant Navathe,&nbsp;Acar Tamersoy,&nbsp;Hanghang Tong,&nbsp;Alex Endert,&nbsp;Duen Horng Chau","doi":"10.1145/2909132.2909246","DOIUrl":null,"url":null,"abstract":"<p><p>Extracting useful patterns from large network datasets has become a fundamental challenge in many domains. We present VISAGE, an interactive visual graph querying approach that empowers users to construct expressive queries, without writing complex code (e.g., finding money laundering rings of bankers and business owners). Our contributions are as follows: (1) we introduce <i>graph autocomplete</i>, an interactive approach that guides users to construct and refine queries, preventing over-specification; (2) VISAGE guides the construction of graph queries using a data-driven approach, enabling users to specify queries with varying levels of specificity, from concrete and detailed (e.g., query by example), to abstract (e.g., with \"wildcard\" nodes of any types), to purely structural matching; (3) a twelve-participant, within-subject user study demonstrates VISAGE's ease of use and the ability to construct graph queries significantly faster than using a conventional query language; (4) VISAGE works on real graphs with over 468K edges, achieving sub-second response times for common queries.</p>","PeriodicalId":91845,"journal":{"name":"AVI : proceedings of the Workshop on Advanced Visual Interfaces. AVI (Conference)","volume":"2016 ","pages":"272-279"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1145/2909132.2909246","citationCount":"31","resultStr":"{\"title\":\"VISAGE: Interactive Visual Graph Querying.\",\"authors\":\"Robert Pienta,&nbsp;Shamkant Navathe,&nbsp;Acar Tamersoy,&nbsp;Hanghang Tong,&nbsp;Alex Endert,&nbsp;Duen Horng Chau\",\"doi\":\"10.1145/2909132.2909246\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Extracting useful patterns from large network datasets has become a fundamental challenge in many domains. We present VISAGE, an interactive visual graph querying approach that empowers users to construct expressive queries, without writing complex code (e.g., finding money laundering rings of bankers and business owners). Our contributions are as follows: (1) we introduce <i>graph autocomplete</i>, an interactive approach that guides users to construct and refine queries, preventing over-specification; (2) VISAGE guides the construction of graph queries using a data-driven approach, enabling users to specify queries with varying levels of specificity, from concrete and detailed (e.g., query by example), to abstract (e.g., with \\\"wildcard\\\" nodes of any types), to purely structural matching; (3) a twelve-participant, within-subject user study demonstrates VISAGE's ease of use and the ability to construct graph queries significantly faster than using a conventional query language; (4) VISAGE works on real graphs with over 468K edges, achieving sub-second response times for common queries.</p>\",\"PeriodicalId\":91845,\"journal\":{\"name\":\"AVI : proceedings of the Workshop on Advanced Visual Interfaces. AVI (Conference)\",\"volume\":\"2016 \",\"pages\":\"272-279\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1145/2909132.2909246\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AVI : proceedings of the Workshop on Advanced Visual Interfaces. AVI (Conference)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2909132.2909246\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AVI : proceedings of the Workshop on Advanced Visual Interfaces. AVI (Conference)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2909132.2909246","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

摘要

从大型网络数据集中提取有用的模式已经成为许多领域的基本挑战。我们介绍了VISAGE,一种交互式可视化图形查询方法,使用户能够构建表达性查询,而无需编写复杂的代码(例如,查找银行家和企业主的洗钱圈)。我们的贡献如下:(1)我们引入了图形自动完成,一种指导用户构建和优化查询的交互式方法,防止过度规范;(2) VISAGE使用数据驱动的方法指导图查询的构建,使用户能够以不同的特异性级别指定查询,从具体和详细(例如,通过示例查询)到抽象(例如,使用任何类型的“通配符”节点),再到纯粹的结构匹配;(3) 12名参与者的主题内用户研究证明了VISAGE的易用性和构建图形查询的能力,比使用传统查询语言要快得多;(4) VISAGE适用于具有超过468K条边的真实图,对常见查询实现亚秒级响应时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

VISAGE: Interactive Visual Graph Querying.

VISAGE: Interactive Visual Graph Querying.

VISAGE: Interactive Visual Graph Querying.

Extracting useful patterns from large network datasets has become a fundamental challenge in many domains. We present VISAGE, an interactive visual graph querying approach that empowers users to construct expressive queries, without writing complex code (e.g., finding money laundering rings of bankers and business owners). Our contributions are as follows: (1) we introduce graph autocomplete, an interactive approach that guides users to construct and refine queries, preventing over-specification; (2) VISAGE guides the construction of graph queries using a data-driven approach, enabling users to specify queries with varying levels of specificity, from concrete and detailed (e.g., query by example), to abstract (e.g., with "wildcard" nodes of any types), to purely structural matching; (3) a twelve-participant, within-subject user study demonstrates VISAGE's ease of use and the ability to construct graph queries significantly faster than using a conventional query language; (4) VISAGE works on real graphs with over 468K edges, achieving sub-second response times for common queries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信