Sukrutha Chettimada, Jincheng Yang, Hyung-Geun Moon, Yang Jin
{"title":"小泡、小泡蛋白-1和小泡蛋白-1:在肺动脉高压中的新作用。","authors":"Sukrutha Chettimada, Jincheng Yang, Hyung-Geun Moon, Yang Jin","doi":"10.5320/wjr.v5.i2.126","DOIUrl":null,"url":null,"abstract":"<p><p>Caveolae are flask-shaped invaginations of cell membrane that play a significant structural and functional role. Caveolae harbor a variety of signaling molecules and serve to receive, concentrate and transmit extracellular signals across the membrane. Caveolins are the main structural proteins residing in the caveolae. Caveolins and another category of newly identified caveolae regulatory proteins, named cavins, are not only responsible for caveolae formation, but also interact with signaling complexes in the caveolae and regulate transmission of signals across the membrane. In the lung, two of the three caveolin isoforms, <i>i.e</i>., cav-1 and -2, are expressed ubiquitously. Cavin protein family is composed of four proteins, named cavin-1 (or PTRF for polymerase Ⅰ and transcript release factor), cavin-2 (or SDPR for serum deprivation protein response), cavin-3 (or SRBC for sdr-related gene product that binds to-c-kinase) and cavin-4 (or MURC for muscle restricted coiled-coiled protein or cavin-4). All the caveolin and cavin proteins are essential regulators for caveolae dynamics. Recently, emerging evidence suggest that caveolae and its associated proteins play crucial roles in development and progression of pulmonary hypertension. The focus of this review is to outline and discuss the contrast in alteration of cav-1 (cav-1),-2 and cavin-1 (PTRF) expression and downstream signaling mechanisms between human and experimental models of pulmonary hypertension.</p>","PeriodicalId":91425,"journal":{"name":"World journal of respirology","volume":"5 2","pages":"126-134"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/da/71/nihms824836.PMC5438095.pdf","citationCount":"20","resultStr":"{\"title\":\"Caveolae, caveolin-1 and cavin-1: Emerging roles in pulmonary hypertension.\",\"authors\":\"Sukrutha Chettimada, Jincheng Yang, Hyung-Geun Moon, Yang Jin\",\"doi\":\"10.5320/wjr.v5.i2.126\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Caveolae are flask-shaped invaginations of cell membrane that play a significant structural and functional role. Caveolae harbor a variety of signaling molecules and serve to receive, concentrate and transmit extracellular signals across the membrane. Caveolins are the main structural proteins residing in the caveolae. Caveolins and another category of newly identified caveolae regulatory proteins, named cavins, are not only responsible for caveolae formation, but also interact with signaling complexes in the caveolae and regulate transmission of signals across the membrane. In the lung, two of the three caveolin isoforms, <i>i.e</i>., cav-1 and -2, are expressed ubiquitously. Cavin protein family is composed of four proteins, named cavin-1 (or PTRF for polymerase Ⅰ and transcript release factor), cavin-2 (or SDPR for serum deprivation protein response), cavin-3 (or SRBC for sdr-related gene product that binds to-c-kinase) and cavin-4 (or MURC for muscle restricted coiled-coiled protein or cavin-4). All the caveolin and cavin proteins are essential regulators for caveolae dynamics. Recently, emerging evidence suggest that caveolae and its associated proteins play crucial roles in development and progression of pulmonary hypertension. The focus of this review is to outline and discuss the contrast in alteration of cav-1 (cav-1),-2 and cavin-1 (PTRF) expression and downstream signaling mechanisms between human and experimental models of pulmonary hypertension.</p>\",\"PeriodicalId\":91425,\"journal\":{\"name\":\"World journal of respirology\",\"volume\":\"5 2\",\"pages\":\"126-134\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/da/71/nihms824836.PMC5438095.pdf\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"World journal of respirology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5320/wjr.v5.i2.126\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"World journal of respirology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5320/wjr.v5.i2.126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Caveolae, caveolin-1 and cavin-1: Emerging roles in pulmonary hypertension.
Caveolae are flask-shaped invaginations of cell membrane that play a significant structural and functional role. Caveolae harbor a variety of signaling molecules and serve to receive, concentrate and transmit extracellular signals across the membrane. Caveolins are the main structural proteins residing in the caveolae. Caveolins and another category of newly identified caveolae regulatory proteins, named cavins, are not only responsible for caveolae formation, but also interact with signaling complexes in the caveolae and regulate transmission of signals across the membrane. In the lung, two of the three caveolin isoforms, i.e., cav-1 and -2, are expressed ubiquitously. Cavin protein family is composed of four proteins, named cavin-1 (or PTRF for polymerase Ⅰ and transcript release factor), cavin-2 (or SDPR for serum deprivation protein response), cavin-3 (or SRBC for sdr-related gene product that binds to-c-kinase) and cavin-4 (or MURC for muscle restricted coiled-coiled protein or cavin-4). All the caveolin and cavin proteins are essential regulators for caveolae dynamics. Recently, emerging evidence suggest that caveolae and its associated proteins play crucial roles in development and progression of pulmonary hypertension. The focus of this review is to outline and discuss the contrast in alteration of cav-1 (cav-1),-2 and cavin-1 (PTRF) expression and downstream signaling mechanisms between human and experimental models of pulmonary hypertension.