{"title":"二元马尔可夫随机场和可解释质谱鉴别。","authors":"Ao Kong, Robert Azencott","doi":"10.1515/sagmb-2016-0019","DOIUrl":null,"url":null,"abstract":"<p><p>For mass spectra acquired from cancer patients by MALDI or SELDI techniques, automated discrimination between cancer types or stages has often been implemented by machine learning algorithms. Nevertheless, these techniques typically lack interpretability in terms of biomarkers. In this paper, we propose a new mass spectra discrimination algorithm by parameterized Markov Random Fields to automatically generate interpretable classifiers with small groups of scored biomarkers. A dataset of 238 MALDI colorectal mass spectra and two datasets of 216 and 253 SELDI ovarian mass spectra respectively were used to test our approach. The results show that our approach reaches accuracies of 81% to 100% to discriminate between patients from different colorectal and ovarian cancer stages, and performs as well or better than previous studies on similar datasets. Moreover, our approach enables efficient planar-displays to visualize mass spectra discrimination and has good asymptotic performance for large datasets. Thus, our classifiers should facilitate the choice and planning of further experiments for biological interpretation of cancer discriminating signatures. In our experiments, the number of mass spectra for each colorectal cancer stage is roughly half of that for each ovarian cancer stage, so that we reach lower discrimination accuracy for colorectal cancer than for ovarian cancer.</p>","PeriodicalId":48980,"journal":{"name":"Statistical Applications in Genetics and Molecular Biology","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2017-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Binary Markov Random Fields and interpretable mass spectra discrimination.\",\"authors\":\"Ao Kong, Robert Azencott\",\"doi\":\"10.1515/sagmb-2016-0019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>For mass spectra acquired from cancer patients by MALDI or SELDI techniques, automated discrimination between cancer types or stages has often been implemented by machine learning algorithms. Nevertheless, these techniques typically lack interpretability in terms of biomarkers. In this paper, we propose a new mass spectra discrimination algorithm by parameterized Markov Random Fields to automatically generate interpretable classifiers with small groups of scored biomarkers. A dataset of 238 MALDI colorectal mass spectra and two datasets of 216 and 253 SELDI ovarian mass spectra respectively were used to test our approach. The results show that our approach reaches accuracies of 81% to 100% to discriminate between patients from different colorectal and ovarian cancer stages, and performs as well or better than previous studies on similar datasets. Moreover, our approach enables efficient planar-displays to visualize mass spectra discrimination and has good asymptotic performance for large datasets. Thus, our classifiers should facilitate the choice and planning of further experiments for biological interpretation of cancer discriminating signatures. In our experiments, the number of mass spectra for each colorectal cancer stage is roughly half of that for each ovarian cancer stage, so that we reach lower discrimination accuracy for colorectal cancer than for ovarian cancer.</p>\",\"PeriodicalId\":48980,\"journal\":{\"name\":\"Statistical Applications in Genetics and Molecular Biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2017-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Applications in Genetics and Molecular Biology\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/sagmb-2016-0019\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Applications in Genetics and Molecular Biology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/sagmb-2016-0019","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Binary Markov Random Fields and interpretable mass spectra discrimination.
For mass spectra acquired from cancer patients by MALDI or SELDI techniques, automated discrimination between cancer types or stages has often been implemented by machine learning algorithms. Nevertheless, these techniques typically lack interpretability in terms of biomarkers. In this paper, we propose a new mass spectra discrimination algorithm by parameterized Markov Random Fields to automatically generate interpretable classifiers with small groups of scored biomarkers. A dataset of 238 MALDI colorectal mass spectra and two datasets of 216 and 253 SELDI ovarian mass spectra respectively were used to test our approach. The results show that our approach reaches accuracies of 81% to 100% to discriminate between patients from different colorectal and ovarian cancer stages, and performs as well or better than previous studies on similar datasets. Moreover, our approach enables efficient planar-displays to visualize mass spectra discrimination and has good asymptotic performance for large datasets. Thus, our classifiers should facilitate the choice and planning of further experiments for biological interpretation of cancer discriminating signatures. In our experiments, the number of mass spectra for each colorectal cancer stage is roughly half of that for each ovarian cancer stage, so that we reach lower discrimination accuracy for colorectal cancer than for ovarian cancer.
期刊介绍:
Statistical Applications in Genetics and Molecular Biology seeks to publish significant research on the application of statistical ideas to problems arising from computational biology. The focus of the papers should be on the relevant statistical issues but should contain a succinct description of the relevant biological problem being considered. The range of topics is wide and will include topics such as linkage mapping, association studies, gene finding and sequence alignment, protein structure prediction, design and analysis of microarray data, molecular evolution and phylogenetic trees, DNA topology, and data base search strategies. Both original research and review articles will be warmly received.