用评定量表模型估计性状的方法比较。

Journal of applied measurement Pub Date : 2017-01-01
Rose E Stafford, Christopher R Runyon, Jodi M Casabianca, Barbara G Dodd
{"title":"用评定量表模型估计性状的方法比较。","authors":"Rose E Stafford,&nbsp;Christopher R Runyon,&nbsp;Jodi M Casabianca,&nbsp;Barbara G Dodd","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>This study examined the performance of four methods of handling missing data for discrete response options on a questionnaire: (1) ignoring the missingness (using only the observed items to estimate trait levels); (2) nearest-neighbor hot deck imputation; (3) multiple hot deck imputation; and (4) semi-parametric multiple imputation. A simulation study examining three questionnaire lengths (41-, 20-, and 10-item) crossed with three levels of missingness (10, 25, and 40 percent) was conducted to see which methods best recovered trait estimates when data were missing completely at random and the polytomous items were scored with Andrich's (1978) rating scale model. The results showed that ignoring the missingness and semi-parametric imputation best recovered known trait levels across all conditions, with the semi-parametric technique providing the most precise trait estimates. This study demonstrates the power of specific objectivity in Rasch measurement, as ignoring the missingness leads to generally unbiased trait estimates.</p>","PeriodicalId":73608,"journal":{"name":"Journal of applied measurement","volume":"18 1","pages":"12-27"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparing Imputation Methods for Trait Estimation Using the Rating Scale Model.\",\"authors\":\"Rose E Stafford,&nbsp;Christopher R Runyon,&nbsp;Jodi M Casabianca,&nbsp;Barbara G Dodd\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study examined the performance of four methods of handling missing data for discrete response options on a questionnaire: (1) ignoring the missingness (using only the observed items to estimate trait levels); (2) nearest-neighbor hot deck imputation; (3) multiple hot deck imputation; and (4) semi-parametric multiple imputation. A simulation study examining three questionnaire lengths (41-, 20-, and 10-item) crossed with three levels of missingness (10, 25, and 40 percent) was conducted to see which methods best recovered trait estimates when data were missing completely at random and the polytomous items were scored with Andrich's (1978) rating scale model. The results showed that ignoring the missingness and semi-parametric imputation best recovered known trait levels across all conditions, with the semi-parametric technique providing the most precise trait estimates. This study demonstrates the power of specific objectivity in Rasch measurement, as ignoring the missingness leads to generally unbiased trait estimates.</p>\",\"PeriodicalId\":73608,\"journal\":{\"name\":\"Journal of applied measurement\",\"volume\":\"18 1\",\"pages\":\"12-27\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of applied measurement\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of applied measurement","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究考察了四种处理问卷离散回答选项缺失数据的方法的表现:(1)忽略缺失(仅使用观察到的项目来估计特质水平);(2)最近邻热甲板推算;(3)多次热甲板推算;(4)半参数多重插值。一项模拟研究检查了三种问卷长度(41项、20项和10项)与三种缺失程度(10、25和40%)的交叉,以观察当数据完全随机缺失时,哪种方法最能恢复性状估计,并使用Andrich(1978)的评分量表模型对多分项进行评分。结果表明,在所有条件下,忽略缺失和半参数估计最能恢复已知性状水平,其中半参数技术提供了最精确的性状估计。本研究证明了Rasch测量中特定客观性的力量,因为忽略缺失会导致一般无偏的特征估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparing Imputation Methods for Trait Estimation Using the Rating Scale Model.

This study examined the performance of four methods of handling missing data for discrete response options on a questionnaire: (1) ignoring the missingness (using only the observed items to estimate trait levels); (2) nearest-neighbor hot deck imputation; (3) multiple hot deck imputation; and (4) semi-parametric multiple imputation. A simulation study examining three questionnaire lengths (41-, 20-, and 10-item) crossed with three levels of missingness (10, 25, and 40 percent) was conducted to see which methods best recovered trait estimates when data were missing completely at random and the polytomous items were scored with Andrich's (1978) rating scale model. The results showed that ignoring the missingness and semi-parametric imputation best recovered known trait levels across all conditions, with the semi-parametric technique providing the most precise trait estimates. This study demonstrates the power of specific objectivity in Rasch measurement, as ignoring the missingness leads to generally unbiased trait estimates.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信