{"title":"犬尿酸对黑胃果蝇野生型和朱红色突变体发育和衰老的影响。","authors":"Valeriya Navrotskaya, Gregory Oxenkrug","doi":"10.15761/PDDT.1000104","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Up-regulation of tryptophan (Trp) conversion into kynurenine (Kyn) and increased formation of down-stream metabolites of Kyn is one of the mechanisms of aging and neurodegenerative disorders. Kyn is an immediate precursor of kynurenic acid (KYNA), an antagonist to NMDA and α7nAChR receptors and activator of aryl hydrocarbon receptor. Increased formation of KYNA ameliorates neurodegeneration and eclosion defect in Drosophila model of Huntington's Disease.</p><p><strong>Aims: </strong>Effect of KYNA on pupae viability and life span was evaluated in wild type (Canton-S, CS) and <i>vermilion</i> Drosophila mutants with deficient formation of Kyn due to mutation of <i>vermilion</i> gene (<i>v</i>) that encodes the Trp-2,3-dioxygenase (TDO), enzyme catalyzing Trp conversion into Kyn.</p><p><strong>Methods: </strong>Vermilion mutants were transferred into the Canton-S genetic background (v-CS). KYNA effect on viability (number of filial generation pupae and %% of their lethality) was assessed in pupae maintained at standard temperature (23°C). KYNA effect on life span was evaluated in adult (imago) flies maintained at 28°C (accelerated aging).</p><p><strong>Results: </strong>KYNA drastically increased (4 fold from 8.36 to 33.62) %% of dead pupae in Canton-S but not in <i>v</i>-CS flies (p=0.0001). KYNA did not affect life span of female Canton-S flies but decreased life span of <i>v</i>-CS female flies (from 17.15 to 14.29 days). KYNA increased life span of male Canton-S (from 17.92 to 19.96 days) and v-CS flies (14.52 to 17.75 days).</p><p><strong>Discussion: </strong>This the first (to the best of our knowledge) observation of the toxic effect of KYNA in Drosophila pupae. KYNA effect on high-temperature induced aging acceleration was gender dependent. Present data support the role of downstream Kyn metabolites in aging mechanisms.</p>","PeriodicalId":91945,"journal":{"name":"Pharmacology, drug development & therapeutics","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5381657/pdf/","citationCount":"9","resultStr":"{\"title\":\"Effect of kynurenic acid on development and aging in wild type and vermilion mutants of <i>Drosophila melanogaster</i>.\",\"authors\":\"Valeriya Navrotskaya, Gregory Oxenkrug\",\"doi\":\"10.15761/PDDT.1000104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Up-regulation of tryptophan (Trp) conversion into kynurenine (Kyn) and increased formation of down-stream metabolites of Kyn is one of the mechanisms of aging and neurodegenerative disorders. Kyn is an immediate precursor of kynurenic acid (KYNA), an antagonist to NMDA and α7nAChR receptors and activator of aryl hydrocarbon receptor. Increased formation of KYNA ameliorates neurodegeneration and eclosion defect in Drosophila model of Huntington's Disease.</p><p><strong>Aims: </strong>Effect of KYNA on pupae viability and life span was evaluated in wild type (Canton-S, CS) and <i>vermilion</i> Drosophila mutants with deficient formation of Kyn due to mutation of <i>vermilion</i> gene (<i>v</i>) that encodes the Trp-2,3-dioxygenase (TDO), enzyme catalyzing Trp conversion into Kyn.</p><p><strong>Methods: </strong>Vermilion mutants were transferred into the Canton-S genetic background (v-CS). KYNA effect on viability (number of filial generation pupae and %% of their lethality) was assessed in pupae maintained at standard temperature (23°C). KYNA effect on life span was evaluated in adult (imago) flies maintained at 28°C (accelerated aging).</p><p><strong>Results: </strong>KYNA drastically increased (4 fold from 8.36 to 33.62) %% of dead pupae in Canton-S but not in <i>v</i>-CS flies (p=0.0001). KYNA did not affect life span of female Canton-S flies but decreased life span of <i>v</i>-CS female flies (from 17.15 to 14.29 days). KYNA increased life span of male Canton-S (from 17.92 to 19.96 days) and v-CS flies (14.52 to 17.75 days).</p><p><strong>Discussion: </strong>This the first (to the best of our knowledge) observation of the toxic effect of KYNA in Drosophila pupae. KYNA effect on high-temperature induced aging acceleration was gender dependent. Present data support the role of downstream Kyn metabolites in aging mechanisms.</p>\",\"PeriodicalId\":91945,\"journal\":{\"name\":\"Pharmacology, drug development & therapeutics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5381657/pdf/\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmacology, drug development & therapeutics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15761/PDDT.1000104\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2016/12/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmacology, drug development & therapeutics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15761/PDDT.1000104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2016/12/8 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Effect of kynurenic acid on development and aging in wild type and vermilion mutants of Drosophila melanogaster.
Background: Up-regulation of tryptophan (Trp) conversion into kynurenine (Kyn) and increased formation of down-stream metabolites of Kyn is one of the mechanisms of aging and neurodegenerative disorders. Kyn is an immediate precursor of kynurenic acid (KYNA), an antagonist to NMDA and α7nAChR receptors and activator of aryl hydrocarbon receptor. Increased formation of KYNA ameliorates neurodegeneration and eclosion defect in Drosophila model of Huntington's Disease.
Aims: Effect of KYNA on pupae viability and life span was evaluated in wild type (Canton-S, CS) and vermilion Drosophila mutants with deficient formation of Kyn due to mutation of vermilion gene (v) that encodes the Trp-2,3-dioxygenase (TDO), enzyme catalyzing Trp conversion into Kyn.
Methods: Vermilion mutants were transferred into the Canton-S genetic background (v-CS). KYNA effect on viability (number of filial generation pupae and %% of their lethality) was assessed in pupae maintained at standard temperature (23°C). KYNA effect on life span was evaluated in adult (imago) flies maintained at 28°C (accelerated aging).
Results: KYNA drastically increased (4 fold from 8.36 to 33.62) %% of dead pupae in Canton-S but not in v-CS flies (p=0.0001). KYNA did not affect life span of female Canton-S flies but decreased life span of v-CS female flies (from 17.15 to 14.29 days). KYNA increased life span of male Canton-S (from 17.92 to 19.96 days) and v-CS flies (14.52 to 17.75 days).
Discussion: This the first (to the best of our knowledge) observation of the toxic effect of KYNA in Drosophila pupae. KYNA effect on high-temperature induced aging acceleration was gender dependent. Present data support the role of downstream Kyn metabolites in aging mechanisms.