Li Wang, Feng Shi, Yaozong Gao, Gang Li, Weili Lin, Dinggang Shen
{"title":"叠核典型相关分析的等强度婴儿脑分割。","authors":"Li Wang, Feng Shi, Yaozong Gao, Gang Li, Weili Lin, Dinggang Shen","doi":"10.1007/978-3-319-28194-0_4","DOIUrl":null,"url":null,"abstract":"<p><p>Segmentation of isointense infant brain (at ~6-months-old) MR images is challenging due to the ongoing maturation and myelination process in the first year of life. In particular, signal contrast between white and gray matters inverses around 6 months of age, where brain tissues appear isointense and hence exhibit extremely low tissue contrast, thus posing significant challenges for automated segmentation. In this paper, we propose a novel segmentation method to address the above-mentioned challenges based on stacked kernel canonical correlation analysis (KCCA). Our main idea is to utilize the 12-month-old brain image with high tissue contrast to guide the segmentation of 6-month-old brain images with extremely low contrast. Specifically, we use KCCA to learn the common feature representations for both 6-month-old and the subsequent 12-month-old brain images of same subjects to make their features comparable in the common space. Note that the longitudinal 12-month-old brain images are not required in the testing stage, and they are required only in the KCCA based training stage to provide a set of longitudinal 6- and 12-month-old image pairs for training. Moreover, for optimizing the common feature representations, we propose a stacked KCCA mapping, instead of using only the conventional one-step of KCCA mapping. In this way, we can better use the 12-month-old brain images as multiple atlases to guide the segmentation of isointense brain images. Specifically, sparse patch-based multi-atlas labeling is used to propagate tissue labels in the (12-month-old) atlases and segment isointense brain images by measuring patch similarity between testing and atlas images with their learned common features. The proposed method was evaluated on 20 isointense brain images via leave-one-out cross-validation, showing much better performance than the state-of-the-art methods.</p>","PeriodicalId":74401,"journal":{"name":"Patch-based techniques in medical imaging : First International Workshop, Patch-MI 2015, held in conjunction with MICCAI 2015, Munich, Germany, October 9, 2015, revised selected papers. Patch-MI (Workshop) (1st : 2015 : Munich, Germany)","volume":" ","pages":"28-36"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/978-3-319-28194-0_4","citationCount":"2","resultStr":"{\"title\":\"Isointense Infant Brain Segmentation by Stacked Kernel Canonical Correlation Analysis.\",\"authors\":\"Li Wang, Feng Shi, Yaozong Gao, Gang Li, Weili Lin, Dinggang Shen\",\"doi\":\"10.1007/978-3-319-28194-0_4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Segmentation of isointense infant brain (at ~6-months-old) MR images is challenging due to the ongoing maturation and myelination process in the first year of life. In particular, signal contrast between white and gray matters inverses around 6 months of age, where brain tissues appear isointense and hence exhibit extremely low tissue contrast, thus posing significant challenges for automated segmentation. In this paper, we propose a novel segmentation method to address the above-mentioned challenges based on stacked kernel canonical correlation analysis (KCCA). Our main idea is to utilize the 12-month-old brain image with high tissue contrast to guide the segmentation of 6-month-old brain images with extremely low contrast. Specifically, we use KCCA to learn the common feature representations for both 6-month-old and the subsequent 12-month-old brain images of same subjects to make their features comparable in the common space. Note that the longitudinal 12-month-old brain images are not required in the testing stage, and they are required only in the KCCA based training stage to provide a set of longitudinal 6- and 12-month-old image pairs for training. Moreover, for optimizing the common feature representations, we propose a stacked KCCA mapping, instead of using only the conventional one-step of KCCA mapping. In this way, we can better use the 12-month-old brain images as multiple atlases to guide the segmentation of isointense brain images. Specifically, sparse patch-based multi-atlas labeling is used to propagate tissue labels in the (12-month-old) atlases and segment isointense brain images by measuring patch similarity between testing and atlas images with their learned common features. The proposed method was evaluated on 20 isointense brain images via leave-one-out cross-validation, showing much better performance than the state-of-the-art methods.</p>\",\"PeriodicalId\":74401,\"journal\":{\"name\":\"Patch-based techniques in medical imaging : First International Workshop, Patch-MI 2015, held in conjunction with MICCAI 2015, Munich, Germany, October 9, 2015, revised selected papers. Patch-MI (Workshop) (1st : 2015 : Munich, Germany)\",\"volume\":\" \",\"pages\":\"28-36\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/978-3-319-28194-0_4\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Patch-based techniques in medical imaging : First International Workshop, Patch-MI 2015, held in conjunction with MICCAI 2015, Munich, Germany, October 9, 2015, revised selected papers. Patch-MI (Workshop) (1st : 2015 : Munich, Germany)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-3-319-28194-0_4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2016/1/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Patch-based techniques in medical imaging : First International Workshop, Patch-MI 2015, held in conjunction with MICCAI 2015, Munich, Germany, October 9, 2015, revised selected papers. Patch-MI (Workshop) (1st : 2015 : Munich, Germany)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-319-28194-0_4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2016/1/8 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Isointense Infant Brain Segmentation by Stacked Kernel Canonical Correlation Analysis.
Segmentation of isointense infant brain (at ~6-months-old) MR images is challenging due to the ongoing maturation and myelination process in the first year of life. In particular, signal contrast between white and gray matters inverses around 6 months of age, where brain tissues appear isointense and hence exhibit extremely low tissue contrast, thus posing significant challenges for automated segmentation. In this paper, we propose a novel segmentation method to address the above-mentioned challenges based on stacked kernel canonical correlation analysis (KCCA). Our main idea is to utilize the 12-month-old brain image with high tissue contrast to guide the segmentation of 6-month-old brain images with extremely low contrast. Specifically, we use KCCA to learn the common feature representations for both 6-month-old and the subsequent 12-month-old brain images of same subjects to make their features comparable in the common space. Note that the longitudinal 12-month-old brain images are not required in the testing stage, and they are required only in the KCCA based training stage to provide a set of longitudinal 6- and 12-month-old image pairs for training. Moreover, for optimizing the common feature representations, we propose a stacked KCCA mapping, instead of using only the conventional one-step of KCCA mapping. In this way, we can better use the 12-month-old brain images as multiple atlases to guide the segmentation of isointense brain images. Specifically, sparse patch-based multi-atlas labeling is used to propagate tissue labels in the (12-month-old) atlases and segment isointense brain images by measuring patch similarity between testing and atlas images with their learned common features. The proposed method was evaluated on 20 isointense brain images via leave-one-out cross-validation, showing much better performance than the state-of-the-art methods.