用扩展卡尔曼滤波器估算人体步态参数和行走距离

Terrell Bennett, Roozbeh Jafari, Nicholas Gans
{"title":"用扩展卡尔曼滤波器估算人体步态参数和行走距离","authors":"Terrell Bennett, Roozbeh Jafari, Nicholas Gans","doi":"10.1109/ACC.2013.6579926","DOIUrl":null,"url":null,"abstract":"<p><p>In this work, we present a novel method to estimate joint angles and distance traveled by a human while walking. We model the human leg as a two-link revolute robot. Inertial measurement sensors placed on the thigh and shin provide the required measurement inputs. The model and inputs are then used to estimate the desired state parameters associated with forward motion using an extended Kalman filter (EKF). Experimental results with subjects walking in a straight line show that distance walked can be measured with accuracy comparable to a state of the art motion tracking systems. The EKF had an average RMSE of 7 cm over the trials with an average accuracy of greater than 97% for linear displacement.</p>","PeriodicalId":74510,"journal":{"name":"Proceedings of the ... American Control Conference. American Control Conference","volume":"2013 ","pages":"752-757"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5363411/pdf/nihms847706.pdf","citationCount":"0","resultStr":"{\"title\":\"An Extended Kalman Filter to Estimate Human Gait Parameters and Walking Distance.\",\"authors\":\"Terrell Bennett, Roozbeh Jafari, Nicholas Gans\",\"doi\":\"10.1109/ACC.2013.6579926\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this work, we present a novel method to estimate joint angles and distance traveled by a human while walking. We model the human leg as a two-link revolute robot. Inertial measurement sensors placed on the thigh and shin provide the required measurement inputs. The model and inputs are then used to estimate the desired state parameters associated with forward motion using an extended Kalman filter (EKF). Experimental results with subjects walking in a straight line show that distance walked can be measured with accuracy comparable to a state of the art motion tracking systems. The EKF had an average RMSE of 7 cm over the trials with an average accuracy of greater than 97% for linear displacement.</p>\",\"PeriodicalId\":74510,\"journal\":{\"name\":\"Proceedings of the ... American Control Conference. American Control Conference\",\"volume\":\"2013 \",\"pages\":\"752-757\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5363411/pdf/nihms847706.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... American Control Conference. American Control Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACC.2013.6579926\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2013/8/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... American Control Conference. American Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACC.2013.6579926","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2013/8/16 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们提出了一种新方法,用于估算人在行走时的关节角度和行走距离。我们将人的腿部建模为双链路旋卷机器人。大腿和小腿上的惯性测量传感器提供所需的测量输入。然后,使用扩展卡尔曼滤波器(EKF),利用模型和输入估计与前行运动相关的理想状态参数。受试者直线行走的实验结果表明,测量行走距离的精确度可与最先进的运动跟踪系统媲美。EKF 在试验中的平均均方根误差为 7 厘米,线性位移的平均准确率超过 97%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Extended Kalman Filter to Estimate Human Gait Parameters and Walking Distance.

In this work, we present a novel method to estimate joint angles and distance traveled by a human while walking. We model the human leg as a two-link revolute robot. Inertial measurement sensors placed on the thigh and shin provide the required measurement inputs. The model and inputs are then used to estimate the desired state parameters associated with forward motion using an extended Kalman filter (EKF). Experimental results with subjects walking in a straight line show that distance walked can be measured with accuracy comparable to a state of the art motion tracking systems. The EKF had an average RMSE of 7 cm over the trials with an average accuracy of greater than 97% for linear displacement.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信