{"title":"一种比较与组合处理选择标记的定量一致性方法。","authors":"Zhiwei Zhang, Shujie Ma, Lei Nie, Guoxing Soon","doi":"10.1515/ijb-2016-0064","DOIUrl":null,"url":null,"abstract":"<p><p>Motivated by an HIV example, we consider how to compare and combine treatment selection markers, which are essential to the notion of precision medicine. The current literature on precision medicine is focused on evaluating and optimizing treatment regimes, which can be obtained by dichotomizing treatment selection markers. In practice, treatment decisions are based not only on efficacy but also on safety, cost and individual preference, making it difficult to choose a single cutoff value for all patients in all settings. It is therefore desirable to have a statistical framework for comparing and combining treatment selection markers without dichotomization. We provide such a framework based on a quantitative concordance measure, which quantifies the extent to which higher marker values are predictive of larger treatment effects. For a given marker, the proposed concordance measure can be estimated from clinical trial data using a U-statistic, which can incorporate auxiliary covariate information through an augmentation term. For combining multiple markers, we propose to maximize the estimated concordance measure among a specified family of combination markers. A cross-validation procedure can be used to remove any re-substitution bias in assessing the quality of an optimized combination marker. The proposed methodology is applied to the HIV example and evaluated in simulation studies.</p>","PeriodicalId":49058,"journal":{"name":"International Journal of Biostatistics","volume":"13 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2017-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/ijb-2016-0064","citationCount":"3","resultStr":"{\"title\":\"A Quantitative Concordance Measure for Comparing and Combining Treatment Selection Markers.\",\"authors\":\"Zhiwei Zhang, Shujie Ma, Lei Nie, Guoxing Soon\",\"doi\":\"10.1515/ijb-2016-0064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Motivated by an HIV example, we consider how to compare and combine treatment selection markers, which are essential to the notion of precision medicine. The current literature on precision medicine is focused on evaluating and optimizing treatment regimes, which can be obtained by dichotomizing treatment selection markers. In practice, treatment decisions are based not only on efficacy but also on safety, cost and individual preference, making it difficult to choose a single cutoff value for all patients in all settings. It is therefore desirable to have a statistical framework for comparing and combining treatment selection markers without dichotomization. We provide such a framework based on a quantitative concordance measure, which quantifies the extent to which higher marker values are predictive of larger treatment effects. For a given marker, the proposed concordance measure can be estimated from clinical trial data using a U-statistic, which can incorporate auxiliary covariate information through an augmentation term. For combining multiple markers, we propose to maximize the estimated concordance measure among a specified family of combination markers. A cross-validation procedure can be used to remove any re-substitution bias in assessing the quality of an optimized combination marker. The proposed methodology is applied to the HIV example and evaluated in simulation studies.</p>\",\"PeriodicalId\":49058,\"journal\":{\"name\":\"International Journal of Biostatistics\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2017-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/ijb-2016-0064\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Biostatistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/ijb-2016-0064\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biostatistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ijb-2016-0064","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
A Quantitative Concordance Measure for Comparing and Combining Treatment Selection Markers.
Motivated by an HIV example, we consider how to compare and combine treatment selection markers, which are essential to the notion of precision medicine. The current literature on precision medicine is focused on evaluating and optimizing treatment regimes, which can be obtained by dichotomizing treatment selection markers. In practice, treatment decisions are based not only on efficacy but also on safety, cost and individual preference, making it difficult to choose a single cutoff value for all patients in all settings. It is therefore desirable to have a statistical framework for comparing and combining treatment selection markers without dichotomization. We provide such a framework based on a quantitative concordance measure, which quantifies the extent to which higher marker values are predictive of larger treatment effects. For a given marker, the proposed concordance measure can be estimated from clinical trial data using a U-statistic, which can incorporate auxiliary covariate information through an augmentation term. For combining multiple markers, we propose to maximize the estimated concordance measure among a specified family of combination markers. A cross-validation procedure can be used to remove any re-substitution bias in assessing the quality of an optimized combination marker. The proposed methodology is applied to the HIV example and evaluated in simulation studies.
期刊介绍:
The International Journal of Biostatistics (IJB) seeks to publish new biostatistical models and methods, new statistical theory, as well as original applications of statistical methods, for important practical problems arising from the biological, medical, public health, and agricultural sciences with an emphasis on semiparametric methods. Given many alternatives to publish exist within biostatistics, IJB offers a place to publish for research in biostatistics focusing on modern methods, often based on machine-learning and other data-adaptive methodologies, as well as providing a unique reading experience that compels the author to be explicit about the statistical inference problem addressed by the paper. IJB is intended that the journal cover the entire range of biostatistics, from theoretical advances to relevant and sensible translations of a practical problem into a statistical framework. Electronic publication also allows for data and software code to be appended, and opens the door for reproducible research allowing readers to easily replicate analyses described in a paper. Both original research and review articles will be warmly received, as will articles applying sound statistical methods to practical problems.