{"title":"非平衡槽中单个布朗粒子的Fokker - Planck方程和Langevin方程","authors":"Joan-Emma Shea, Irwin Oppenheim","doi":"10.1021/jp961605d","DOIUrl":null,"url":null,"abstract":"<p >The Brownian motion of a large spherical particle of mass <i>M</i> immersed in a nonequilibrium bath of <i>N</i> light spherical particles of mass <i>m</i> is studied. A Fokker?Planck equation and a generalized Langevin equation for an arbitrary function of the position and momentum of the Brownian particle are derived from first principles of statistical mechanics using time-dependent projection operators. These projection operators reflect the nonequilibrium nature of the bath, which is described by the exact nonequilibrium distribution function of Oppenheim and Levine [Oppenheim, I.; Levine, R. D. <i>Physica A</i><b>1979</b>, <i>99</i>, 383]. The Fokker?Planck equation is obtained by eliminating the fast bath variables of the system [Van Kampen, N. G.; Oppenheim, I. <i>Physica A</i><b>1986</b>, <i>138</i>, 231], while the Langevin equation is obtained using a projection operator which averages over these variables [Mazur, P.; Oppenheim, I. <i>Physica</i><b>1970</b>, <i>50</i>, 241]. The two methods yield equivalent results, valid to second order in the small parameters ε = (<i>m</i>/<i>M</i>)<sup>1/2</sup> and λ, where λ is a measure of the magnitude of the macroscopic gradients of the system. </p>","PeriodicalId":58,"journal":{"name":"The Journal of Physical Chemistry ","volume":"100 49","pages":"19035–19042"},"PeriodicalIF":2.7810,"publicationDate":"1996-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1021/jp961605d","citationCount":"44","resultStr":"{\"title\":\"Fokker−Planck Equation and Langevin Equation for One Brownian Particle in a Nonequilibrium Bath\",\"authors\":\"Joan-Emma Shea, Irwin Oppenheim\",\"doi\":\"10.1021/jp961605d\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The Brownian motion of a large spherical particle of mass <i>M</i> immersed in a nonequilibrium bath of <i>N</i> light spherical particles of mass <i>m</i> is studied. A Fokker?Planck equation and a generalized Langevin equation for an arbitrary function of the position and momentum of the Brownian particle are derived from first principles of statistical mechanics using time-dependent projection operators. These projection operators reflect the nonequilibrium nature of the bath, which is described by the exact nonequilibrium distribution function of Oppenheim and Levine [Oppenheim, I.; Levine, R. D. <i>Physica A</i><b>1979</b>, <i>99</i>, 383]. The Fokker?Planck equation is obtained by eliminating the fast bath variables of the system [Van Kampen, N. G.; Oppenheim, I. <i>Physica A</i><b>1986</b>, <i>138</i>, 231], while the Langevin equation is obtained using a projection operator which averages over these variables [Mazur, P.; Oppenheim, I. <i>Physica</i><b>1970</b>, <i>50</i>, 241]. The two methods yield equivalent results, valid to second order in the small parameters ε = (<i>m</i>/<i>M</i>)<sup>1/2</sup> and λ, where λ is a measure of the magnitude of the macroscopic gradients of the system. </p>\",\"PeriodicalId\":58,\"journal\":{\"name\":\"The Journal of Physical Chemistry \",\"volume\":\"100 49\",\"pages\":\"19035–19042\"},\"PeriodicalIF\":2.7810,\"publicationDate\":\"1996-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1021/jp961605d\",\"citationCount\":\"44\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry \",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/jp961605d\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry ","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jp961605d","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 44
摘要
研究了一个质量为M的大球粒浸入N个质量为M的轻球粒的非平衡浴中的布朗运动。福克吗?从统计力学的第一原理出发,利用时变投影算子导出了布朗粒子的任意位置和动量函数的普朗克方程和广义朗之万方程。这些投影算子反映了浴池的非平衡性质,这是由Oppenheim和Levine的精确非平衡分布函数所描述的[Oppenheim, I.;李建平,李建平。中国生物医学工程学报,1999,19(3):357 - 357。福克?普朗克方程是通过消去系统的快浴变量得到的[Van Kampen, n.g.;Oppenheim, I. physics a 1986, 138, 231],而Langevin方程是使用对这些变量进行平均的投影算子得到的[Mazur, P.;李建平,刘建平。中国生物医学工程学报,1997,22(1):1 - 4。在ε = (m/ m)1/2和λ的小参数范围内,这两种方法得到了等效的二阶结果,其中λ是系统宏观梯度大小的度量。
Fokker−Planck Equation and Langevin Equation for One Brownian Particle in a Nonequilibrium Bath
The Brownian motion of a large spherical particle of mass M immersed in a nonequilibrium bath of N light spherical particles of mass m is studied. A Fokker?Planck equation and a generalized Langevin equation for an arbitrary function of the position and momentum of the Brownian particle are derived from first principles of statistical mechanics using time-dependent projection operators. These projection operators reflect the nonequilibrium nature of the bath, which is described by the exact nonequilibrium distribution function of Oppenheim and Levine [Oppenheim, I.; Levine, R. D. Physica A1979, 99, 383]. The Fokker?Planck equation is obtained by eliminating the fast bath variables of the system [Van Kampen, N. G.; Oppenheim, I. Physica A1986, 138, 231], while the Langevin equation is obtained using a projection operator which averages over these variables [Mazur, P.; Oppenheim, I. Physica1970, 50, 241]. The two methods yield equivalent results, valid to second order in the small parameters ε = (m/M)1/2 and λ, where λ is a measure of the magnitude of the macroscopic gradients of the system.