Jenny A Greig, Maria P Limberis, Peter Bell, Shu-Jen Chen, Roberto Calcedo, Daniel J Rader, James M Wilson
{"title":"检查AAV8.TBG的非临床研究。野生型和LDLR+/-型恒河猴hLDLR载体相关毒性研究","authors":"Jenny A Greig, Maria P Limberis, Peter Bell, Shu-Jen Chen, Roberto Calcedo, Daniel J Rader, James M Wilson","doi":"10.1089/humc.2017.014","DOIUrl":null,"url":null,"abstract":"<p><p>Vectors based on adeno-associated virus serotype 8 (AAV8) have been evaluated in several clinical trials of gene therapy for hemophilia B with encouraging results. In preparation for a Phase 1 clinical trial of AAV8 gene therapy for the treatment of homozygous familial hypercholesterolemia (HoFH), the safety of the clinical candidate vector, AAV8.TBG.hLDLR, was evaluated in wild-type rhesus macaques and macaques heterozygous for a nonsense mutation in the low-density lipoprotein receptor (LDLR) gene (LDLR<sup>+/-</sup>). Intravenous infusion of 1.25 × 10<sup>13</sup> GC/kg of AAV8.TBG.hLDLR expressing the human version of LDLR was well tolerated and associated with only mild histopathology that was restricted to the liver and sporadic, low-level, and transient elevations in transaminases. Some animals developed T cells to both capsid and the hLDLR transgene, although these adaptive immune responses were most evident at the early time points from peripheral blood and in mononuclear cells derived from the liver. This toxicology study supports the safety of AAV8.TBG.hLDLR for evaluation in HoFH patients, and provides some context for evaluating previously conducted clinical trials of AAV8 in patients with hemophilia.</p>","PeriodicalId":51315,"journal":{"name":"Human Gene Therapy Clinical Development","volume":"28 1","pages":"39-50"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1089/humc.2017.014","citationCount":"45","resultStr":"{\"title\":\"Non-Clinical Study Examining AAV8.TBG.hLDLR Vector-Associated Toxicity in Chow-Fed Wild-Type and LDLR<sup>+/-</sup> Rhesus Macaques.\",\"authors\":\"Jenny A Greig, Maria P Limberis, Peter Bell, Shu-Jen Chen, Roberto Calcedo, Daniel J Rader, James M Wilson\",\"doi\":\"10.1089/humc.2017.014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Vectors based on adeno-associated virus serotype 8 (AAV8) have been evaluated in several clinical trials of gene therapy for hemophilia B with encouraging results. In preparation for a Phase 1 clinical trial of AAV8 gene therapy for the treatment of homozygous familial hypercholesterolemia (HoFH), the safety of the clinical candidate vector, AAV8.TBG.hLDLR, was evaluated in wild-type rhesus macaques and macaques heterozygous for a nonsense mutation in the low-density lipoprotein receptor (LDLR) gene (LDLR<sup>+/-</sup>). Intravenous infusion of 1.25 × 10<sup>13</sup> GC/kg of AAV8.TBG.hLDLR expressing the human version of LDLR was well tolerated and associated with only mild histopathology that was restricted to the liver and sporadic, low-level, and transient elevations in transaminases. Some animals developed T cells to both capsid and the hLDLR transgene, although these adaptive immune responses were most evident at the early time points from peripheral blood and in mononuclear cells derived from the liver. This toxicology study supports the safety of AAV8.TBG.hLDLR for evaluation in HoFH patients, and provides some context for evaluating previously conducted clinical trials of AAV8 in patients with hemophilia.</p>\",\"PeriodicalId\":51315,\"journal\":{\"name\":\"Human Gene Therapy Clinical Development\",\"volume\":\"28 1\",\"pages\":\"39-50\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1089/humc.2017.014\",\"citationCount\":\"45\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human Gene Therapy Clinical Development\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1089/humc.2017.014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Gene Therapy Clinical Development","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1089/humc.2017.014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
Non-Clinical Study Examining AAV8.TBG.hLDLR Vector-Associated Toxicity in Chow-Fed Wild-Type and LDLR+/- Rhesus Macaques.
Vectors based on adeno-associated virus serotype 8 (AAV8) have been evaluated in several clinical trials of gene therapy for hemophilia B with encouraging results. In preparation for a Phase 1 clinical trial of AAV8 gene therapy for the treatment of homozygous familial hypercholesterolemia (HoFH), the safety of the clinical candidate vector, AAV8.TBG.hLDLR, was evaluated in wild-type rhesus macaques and macaques heterozygous for a nonsense mutation in the low-density lipoprotein receptor (LDLR) gene (LDLR+/-). Intravenous infusion of 1.25 × 1013 GC/kg of AAV8.TBG.hLDLR expressing the human version of LDLR was well tolerated and associated with only mild histopathology that was restricted to the liver and sporadic, low-level, and transient elevations in transaminases. Some animals developed T cells to both capsid and the hLDLR transgene, although these adaptive immune responses were most evident at the early time points from peripheral blood and in mononuclear cells derived from the liver. This toxicology study supports the safety of AAV8.TBG.hLDLR for evaluation in HoFH patients, and provides some context for evaluating previously conducted clinical trials of AAV8 in patients with hemophilia.
期刊介绍:
Human Gene Therapy (HGT) is the premier, multidisciplinary journal covering all aspects of gene therapy. The Journal publishes important advances in DNA, RNA, cell and immune therapies, validating the latest advances in research and new technologies.