Yang Liu, Rui Li, Jing Wang, Xiaohan Zhang, Rong Jia, Yi Gao, Hui Peng
{"title":"一种新的葡萄糖和木糖刺激的黄热无氧杆菌β-葡萄糖苷酶对甘蔗渣的酶解作用增强。将云南E13T。","authors":"Yang Liu, Rui Li, Jing Wang, Xiaohan Zhang, Rong Jia, Yi Gao, Hui Peng","doi":"10.1186/s12858-017-0079-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>β-Glucosidase is claimed as a key enzyme in cellulose hydrolysis. The cellulosic fibers are usually entrapped with hemicelluloses containing xylose. So there is ongoing interest in searching for glucose- and xylose-stimulated β-glucosidases to increase the efficiency of hydrolysis of cellulosic biomass.</p><p><strong>Results: </strong>A thermostable β-glucosidase gene (Bglp) was cloned from Anoxybacillus flavithermus subsp. yunnanensis E13<sup>T</sup> and characterized. Optimal enzyme activity was observed at 60 °C and pH 7.0. Bglp was relatively stable at 60 °C with a 10-h half-life. The kinetic parameters V <sub>max</sub> and K <sub>m</sub> for p-nitrophenyl-β-D-glucopyranoside (pNPG) were 771 ± 39 μmol/min/mg and 0.29 ± 0.01 mM, respectively. The activity of Bglp is dramatically stimulated by glucose or xylose at concentrations up to 1.4 M. After Bglp was added to Celluclast® 1.5 L, the conversion of sugarcane bagasse was 48.4 ± 0.8%, which was much higher than of Celluclast® 1.5 L alone. Furthermore, Bglp showed obvious advantages in the hydrolysis when initial concentrations of glucose and xylose are high.</p><p><strong>Conclusions: </strong>The supplementation of BglP significantly enhanced the glucose yield from sugarcane bagasse, especially in the presence of high concentrations of glucose or xylose. Bglp should be a promising candidate for industrial applications.</p>","PeriodicalId":9113,"journal":{"name":"BMC Biochemistry","volume":"18 1","pages":"4"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12858-017-0079-z","citationCount":"19","resultStr":"{\"title\":\"Increased enzymatic hydrolysis of sugarcane bagasse by a novel glucose- and xylose-stimulated β-glucosidase from Anoxybacillus flavithermus subsp. yunnanensis E13<sup>T</sup>.\",\"authors\":\"Yang Liu, Rui Li, Jing Wang, Xiaohan Zhang, Rong Jia, Yi Gao, Hui Peng\",\"doi\":\"10.1186/s12858-017-0079-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>β-Glucosidase is claimed as a key enzyme in cellulose hydrolysis. The cellulosic fibers are usually entrapped with hemicelluloses containing xylose. So there is ongoing interest in searching for glucose- and xylose-stimulated β-glucosidases to increase the efficiency of hydrolysis of cellulosic biomass.</p><p><strong>Results: </strong>A thermostable β-glucosidase gene (Bglp) was cloned from Anoxybacillus flavithermus subsp. yunnanensis E13<sup>T</sup> and characterized. Optimal enzyme activity was observed at 60 °C and pH 7.0. Bglp was relatively stable at 60 °C with a 10-h half-life. The kinetic parameters V <sub>max</sub> and K <sub>m</sub> for p-nitrophenyl-β-D-glucopyranoside (pNPG) were 771 ± 39 μmol/min/mg and 0.29 ± 0.01 mM, respectively. The activity of Bglp is dramatically stimulated by glucose or xylose at concentrations up to 1.4 M. After Bglp was added to Celluclast® 1.5 L, the conversion of sugarcane bagasse was 48.4 ± 0.8%, which was much higher than of Celluclast® 1.5 L alone. Furthermore, Bglp showed obvious advantages in the hydrolysis when initial concentrations of glucose and xylose are high.</p><p><strong>Conclusions: </strong>The supplementation of BglP significantly enhanced the glucose yield from sugarcane bagasse, especially in the presence of high concentrations of glucose or xylose. Bglp should be a promising candidate for industrial applications.</p>\",\"PeriodicalId\":9113,\"journal\":{\"name\":\"BMC Biochemistry\",\"volume\":\"18 1\",\"pages\":\"4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/s12858-017-0079-z\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Biochemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s12858-017-0079-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Biochemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s12858-017-0079-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Increased enzymatic hydrolysis of sugarcane bagasse by a novel glucose- and xylose-stimulated β-glucosidase from Anoxybacillus flavithermus subsp. yunnanensis E13T.
Background: β-Glucosidase is claimed as a key enzyme in cellulose hydrolysis. The cellulosic fibers are usually entrapped with hemicelluloses containing xylose. So there is ongoing interest in searching for glucose- and xylose-stimulated β-glucosidases to increase the efficiency of hydrolysis of cellulosic biomass.
Results: A thermostable β-glucosidase gene (Bglp) was cloned from Anoxybacillus flavithermus subsp. yunnanensis E13T and characterized. Optimal enzyme activity was observed at 60 °C and pH 7.0. Bglp was relatively stable at 60 °C with a 10-h half-life. The kinetic parameters V max and K m for p-nitrophenyl-β-D-glucopyranoside (pNPG) were 771 ± 39 μmol/min/mg and 0.29 ± 0.01 mM, respectively. The activity of Bglp is dramatically stimulated by glucose or xylose at concentrations up to 1.4 M. After Bglp was added to Celluclast® 1.5 L, the conversion of sugarcane bagasse was 48.4 ± 0.8%, which was much higher than of Celluclast® 1.5 L alone. Furthermore, Bglp showed obvious advantages in the hydrolysis when initial concentrations of glucose and xylose are high.
Conclusions: The supplementation of BglP significantly enhanced the glucose yield from sugarcane bagasse, especially in the presence of high concentrations of glucose or xylose. Bglp should be a promising candidate for industrial applications.
期刊介绍:
BMC Biochemistry is an open access journal publishing original peer-reviewed research articles in all aspects of biochemical processes, including the structure, function and dynamics of metabolic pathways, supramolecular complexes, enzymes, proteins, nucleic acids and small molecular components of organelles, cells and tissues. BMC Biochemistry (ISSN 1471-2091) is indexed/tracked/covered by PubMed, MEDLINE, BIOSIS, CAS, EMBASE, Scopus, Zoological Record, Thomson Reuters (ISI) and Google Scholar.