Qihua Fan, Cody S Nelson, Kristy M Bialas, Flavia Chiuppesi, Joshua Amos, Thaddeus C Gurley, Dawn Jones Marshall, Joshua Eudailey, Holly Heimsath, Jonathon Himes, Ashlesha Deshpande, Mark R Walter, Felix Wussow, Don J Diamond, Peter A Barry, M Anthony Moody, Amitinder Kaur, Sallie R Permar
{"title":"猴先天性巨细胞病毒(CMV)传播模型对原发恒河巨细胞病毒(CMV)感染的浆母细胞应答","authors":"Qihua Fan, Cody S Nelson, Kristy M Bialas, Flavia Chiuppesi, Joshua Amos, Thaddeus C Gurley, Dawn Jones Marshall, Joshua Eudailey, Holly Heimsath, Jonathon Himes, Ashlesha Deshpande, Mark R Walter, Felix Wussow, Don J Diamond, Peter A Barry, M Anthony Moody, Amitinder Kaur, Sallie R Permar","doi":"10.1128/CVI.00510-16","DOIUrl":null,"url":null,"abstract":"<p><p>Human cytomegalovirus (HCMV) is the most common congenital infection worldwide and the leading infectious cause of neurologic deficits and hearing loss in newborns. Development of a maternal HCMV vaccine to prevent vertical virus transmission is a high priority, yet protective maternal immune responses following acute infection are poorly understood. To characterize the maternal humoral immune response to primary CMV infection, we investigated the plasmablast and early antibody repertoire using a nonhuman primate model with two acutely rhesus CMV (RhCMV)-infected animals-a CD4<sup>+</sup> T cell-depleted dam that experienced fetal loss shortly after vertical RhCMV transmission and an immunocompetent dam that did not transmit RhCMV to her infant. Compared to the CD4<sup>+</sup> T cell-depleted dam that experienced fetal loss, the immunocompetent, nontransmitting dam had a more rapid and robust plasmablast response that produced a high proportion of RhCMV-reactive antibodies, including the first identified monoclonal antibody specific for soluble and membrane-associated RhCMV envelope glycoprotein B (gB). Additionally, we noted that plasmablast RhCMV-specific antibodies had variable gene usage and maturation similar to those observed in a monkey chronically coinfected with simian immunodeficiency virus (SIV) and RhCMV. This study reveals characteristics of the early maternal RhCMV-specific humoral immune responses to primary RhCMV infection in rhesus monkeys and may contribute to a future understanding of what antibody responses should be targeted by a vaccine to eliminate congenital HCMV transmission. Furthermore, the identification of an RhCMV gB-specific monoclonal antibody underscores the possibility of modeling future HCMV vaccine strategies in this nonhuman primate model.</p>","PeriodicalId":10271,"journal":{"name":"Clinical and Vaccine Immunology","volume":"24 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1128/CVI.00510-16","citationCount":"10","resultStr":"{\"title\":\"Plasmablast Response to Primary Rhesus Cytomegalovirus (CMV) Infection in a Monkey Model of Congenital CMV Transmission.\",\"authors\":\"Qihua Fan, Cody S Nelson, Kristy M Bialas, Flavia Chiuppesi, Joshua Amos, Thaddeus C Gurley, Dawn Jones Marshall, Joshua Eudailey, Holly Heimsath, Jonathon Himes, Ashlesha Deshpande, Mark R Walter, Felix Wussow, Don J Diamond, Peter A Barry, M Anthony Moody, Amitinder Kaur, Sallie R Permar\",\"doi\":\"10.1128/CVI.00510-16\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Human cytomegalovirus (HCMV) is the most common congenital infection worldwide and the leading infectious cause of neurologic deficits and hearing loss in newborns. Development of a maternal HCMV vaccine to prevent vertical virus transmission is a high priority, yet protective maternal immune responses following acute infection are poorly understood. To characterize the maternal humoral immune response to primary CMV infection, we investigated the plasmablast and early antibody repertoire using a nonhuman primate model with two acutely rhesus CMV (RhCMV)-infected animals-a CD4<sup>+</sup> T cell-depleted dam that experienced fetal loss shortly after vertical RhCMV transmission and an immunocompetent dam that did not transmit RhCMV to her infant. Compared to the CD4<sup>+</sup> T cell-depleted dam that experienced fetal loss, the immunocompetent, nontransmitting dam had a more rapid and robust plasmablast response that produced a high proportion of RhCMV-reactive antibodies, including the first identified monoclonal antibody specific for soluble and membrane-associated RhCMV envelope glycoprotein B (gB). Additionally, we noted that plasmablast RhCMV-specific antibodies had variable gene usage and maturation similar to those observed in a monkey chronically coinfected with simian immunodeficiency virus (SIV) and RhCMV. This study reveals characteristics of the early maternal RhCMV-specific humoral immune responses to primary RhCMV infection in rhesus monkeys and may contribute to a future understanding of what antibody responses should be targeted by a vaccine to eliminate congenital HCMV transmission. Furthermore, the identification of an RhCMV gB-specific monoclonal antibody underscores the possibility of modeling future HCMV vaccine strategies in this nonhuman primate model.</p>\",\"PeriodicalId\":10271,\"journal\":{\"name\":\"Clinical and Vaccine Immunology\",\"volume\":\"24 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1128/CVI.00510-16\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical and Vaccine Immunology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1128/CVI.00510-16\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2017/5/1 0:00:00\",\"PubModel\":\"Print\",\"JCR\":\"Q2\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical and Vaccine Immunology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1128/CVI.00510-16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/5/1 0:00:00","PubModel":"Print","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Plasmablast Response to Primary Rhesus Cytomegalovirus (CMV) Infection in a Monkey Model of Congenital CMV Transmission.
Human cytomegalovirus (HCMV) is the most common congenital infection worldwide and the leading infectious cause of neurologic deficits and hearing loss in newborns. Development of a maternal HCMV vaccine to prevent vertical virus transmission is a high priority, yet protective maternal immune responses following acute infection are poorly understood. To characterize the maternal humoral immune response to primary CMV infection, we investigated the plasmablast and early antibody repertoire using a nonhuman primate model with two acutely rhesus CMV (RhCMV)-infected animals-a CD4+ T cell-depleted dam that experienced fetal loss shortly after vertical RhCMV transmission and an immunocompetent dam that did not transmit RhCMV to her infant. Compared to the CD4+ T cell-depleted dam that experienced fetal loss, the immunocompetent, nontransmitting dam had a more rapid and robust plasmablast response that produced a high proportion of RhCMV-reactive antibodies, including the first identified monoclonal antibody specific for soluble and membrane-associated RhCMV envelope glycoprotein B (gB). Additionally, we noted that plasmablast RhCMV-specific antibodies had variable gene usage and maturation similar to those observed in a monkey chronically coinfected with simian immunodeficiency virus (SIV) and RhCMV. This study reveals characteristics of the early maternal RhCMV-specific humoral immune responses to primary RhCMV infection in rhesus monkeys and may contribute to a future understanding of what antibody responses should be targeted by a vaccine to eliminate congenital HCMV transmission. Furthermore, the identification of an RhCMV gB-specific monoclonal antibody underscores the possibility of modeling future HCMV vaccine strategies in this nonhuman primate model.
期刊介绍:
Cessation. First launched as Clinical and Diagnostic Laboratory Immunology (CDLI) in 1994, CVI published articles that enhanced the understanding of the immune response in health and disease and after vaccination by showcasing discoveries in clinical, laboratory, and vaccine immunology. CVI was committed to advancing all aspects of vaccine research and immunization, including discovery of new vaccine antigens and vaccine design, development and evaluation of vaccines in animal models and in humans, characterization of immune responses and mechanisms of vaccine action, controlled challenge studies to assess vaccine efficacy, study of vaccine vectors, adjuvants, and immunomodulators, immune correlates of protection, and clinical trials.