Danielle L Taylor, Arun K Tiwari, Jeffrey A Lieberman, Steven G Potkin, Herbert Y Meltzer, Joanne Knight, Gary Remington, Daniel J Müller, James L Kennedy
{"title":"功能性谷氨酸系统基因变异及氯氮平临床反应的药理学分析。","authors":"Danielle L Taylor, Arun K Tiwari, Jeffrey A Lieberman, Steven G Potkin, Herbert Y Meltzer, Joanne Knight, Gary Remington, Daniel J Müller, James L Kennedy","doi":"10.1159/000449224","DOIUrl":null,"url":null,"abstract":"<p><p>Altered glutamate neurotransmission is implicated in the etiology of schizophrenia (SCZ) and the pharmacogenetics of response to clozapine (CLZ), which is the drug of choice for treatment-resistant SCZ. Response to antipsychotic therapy is highly variable, although twin studies suggest a genetic component. We investigated the association of 10 glutamate system gene variants with CLZ response using standard genotyping procedures. <i>GRM2</i> (rs4067 and rs2518461), <i>SLC1A2</i> (rs4354668, rs4534557, and rs2901534), <i>SLC6A9</i> (rs12037805, rs1978195, and rs16831558), <i>GRIA1</i> (rs2195450), and <i>GAD1</i> (rs3749034) were typed in 163 European SCZ/schizoaffective disorder patients deemed resistant or intolerant to previous pharmacotherapy. Response was assessed following 6 months of CLZ monotherapy using change in Brief Psychiatric Rating Scale (BPRS) scores. Categorical and continuous response variables were analyzed using χ<sup>2</sup> tests and analysis of covariance, respectively. We report no significant associations following correction for multiple testing. Prior to correction, nominally significant associations were observed for <i>SLC6A9</i>, <i>SLC1A2</i>, <i>GRM2</i>, and <i>GRIA1</i>. Most notably, CC homozygotes of rs16831558 located in the glycine transporter 1 gene <i>(SLC6A9)</i> exhibited an allele dose-dependent improvement in positive symptoms compared to T allele carriers (p<sub>uncorrected</sub> = 0.008, p<sub>corrected</sub> = 0.08). To clarify the role of <i>SLC6A9</i> in clinical response to antipsychotic medication, and CLZ in particular, this finding warrants further investigation in larger well-characterized samples.</p>","PeriodicalId":18957,"journal":{"name":"Molecular Neuropsychiatry","volume":"2 4","pages":"185-197"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000449224","citationCount":"13","resultStr":"{\"title\":\"Pharmacogenetic Analysis of Functional Glutamate System Gene Variants and Clinical Response to Clozapine.\",\"authors\":\"Danielle L Taylor, Arun K Tiwari, Jeffrey A Lieberman, Steven G Potkin, Herbert Y Meltzer, Joanne Knight, Gary Remington, Daniel J Müller, James L Kennedy\",\"doi\":\"10.1159/000449224\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Altered glutamate neurotransmission is implicated in the etiology of schizophrenia (SCZ) and the pharmacogenetics of response to clozapine (CLZ), which is the drug of choice for treatment-resistant SCZ. Response to antipsychotic therapy is highly variable, although twin studies suggest a genetic component. We investigated the association of 10 glutamate system gene variants with CLZ response using standard genotyping procedures. <i>GRM2</i> (rs4067 and rs2518461), <i>SLC1A2</i> (rs4354668, rs4534557, and rs2901534), <i>SLC6A9</i> (rs12037805, rs1978195, and rs16831558), <i>GRIA1</i> (rs2195450), and <i>GAD1</i> (rs3749034) were typed in 163 European SCZ/schizoaffective disorder patients deemed resistant or intolerant to previous pharmacotherapy. Response was assessed following 6 months of CLZ monotherapy using change in Brief Psychiatric Rating Scale (BPRS) scores. Categorical and continuous response variables were analyzed using χ<sup>2</sup> tests and analysis of covariance, respectively. We report no significant associations following correction for multiple testing. Prior to correction, nominally significant associations were observed for <i>SLC6A9</i>, <i>SLC1A2</i>, <i>GRM2</i>, and <i>GRIA1</i>. Most notably, CC homozygotes of rs16831558 located in the glycine transporter 1 gene <i>(SLC6A9)</i> exhibited an allele dose-dependent improvement in positive symptoms compared to T allele carriers (p<sub>uncorrected</sub> = 0.008, p<sub>corrected</sub> = 0.08). To clarify the role of <i>SLC6A9</i> in clinical response to antipsychotic medication, and CLZ in particular, this finding warrants further investigation in larger well-characterized samples.</p>\",\"PeriodicalId\":18957,\"journal\":{\"name\":\"Molecular Neuropsychiatry\",\"volume\":\"2 4\",\"pages\":\"185-197\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1159/000449224\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Neuropsychiatry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1159/000449224\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2016/10/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Neuropsychiatry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1159/000449224","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2016/10/12 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Pharmacogenetic Analysis of Functional Glutamate System Gene Variants and Clinical Response to Clozapine.
Altered glutamate neurotransmission is implicated in the etiology of schizophrenia (SCZ) and the pharmacogenetics of response to clozapine (CLZ), which is the drug of choice for treatment-resistant SCZ. Response to antipsychotic therapy is highly variable, although twin studies suggest a genetic component. We investigated the association of 10 glutamate system gene variants with CLZ response using standard genotyping procedures. GRM2 (rs4067 and rs2518461), SLC1A2 (rs4354668, rs4534557, and rs2901534), SLC6A9 (rs12037805, rs1978195, and rs16831558), GRIA1 (rs2195450), and GAD1 (rs3749034) were typed in 163 European SCZ/schizoaffective disorder patients deemed resistant or intolerant to previous pharmacotherapy. Response was assessed following 6 months of CLZ monotherapy using change in Brief Psychiatric Rating Scale (BPRS) scores. Categorical and continuous response variables were analyzed using χ2 tests and analysis of covariance, respectively. We report no significant associations following correction for multiple testing. Prior to correction, nominally significant associations were observed for SLC6A9, SLC1A2, GRM2, and GRIA1. Most notably, CC homozygotes of rs16831558 located in the glycine transporter 1 gene (SLC6A9) exhibited an allele dose-dependent improvement in positive symptoms compared to T allele carriers (puncorrected = 0.008, pcorrected = 0.08). To clarify the role of SLC6A9 in clinical response to antipsychotic medication, and CLZ in particular, this finding warrants further investigation in larger well-characterized samples.