在BLIP位置50的系统取代导致A类β-内酰胺酶结合特异性的变化。

Q2 Biochemistry, Genetics and Molecular Biology
Carolyn J Adamski, Timothy Palzkill
{"title":"在BLIP位置50的系统取代导致A类β-内酰胺酶结合特异性的变化。","authors":"Carolyn J Adamski,&nbsp;Timothy Palzkill","doi":"10.1186/s12858-017-0077-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The production of β-lactamases by bacteria is the most common mechanism of resistance to the widely prescribed β-lactam antibiotics. β-lactamase inhibitory protein (BLIP) competitively inhibits class A β-lactamases via two binding loops that occlude the active site. It has been shown that BLIP Tyr50 is a specificity determinant in that substitutions at this position result in large differential changes in the relative affinity of BLIP for class A β-lactamases.</p><p><strong>Results: </strong>In this study, the effect of systematic substitutions at BLIP position 50 on binding to class A β-lactamases was examined to further explore the role of BLIP Tyr50 in modulating specificity. The results indicate the sequence requirements at position 50 are widely different depending on the target β-lactamase. Stringent sequence requirements were observed at Tyr50 for binding Bacillus anthracis Bla1 while moderate requirements for binding TEM-1 and relaxed requirements for binding KPC-2 β-lactamase were seen. These findings cannot be easily rationalized based on the β-lactamase residues in direct contact with BLIP Tyr50 since they are identical for Bla1 and KPC-2 suggesting that differences in the BLIP-β-lactamase interface outside the local environment of Tyr50 influence the effect of substitutions.</p><p><strong>Conclusions: </strong>Results from this study and previous studies suggest that substitutions at BLIP Tyr50 may induce changes at the interface outside its local environment and point to the complexity of predicting the impact of substitutions at a protein-protein interaction interface.</p>","PeriodicalId":9113,"journal":{"name":"BMC Biochemistry","volume":"18 1","pages":"2"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12858-017-0077-1","citationCount":"5","resultStr":"{\"title\":\"Systematic substitutions at BLIP position 50 result in changes in binding specificity for class A β-lactamases.\",\"authors\":\"Carolyn J Adamski,&nbsp;Timothy Palzkill\",\"doi\":\"10.1186/s12858-017-0077-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The production of β-lactamases by bacteria is the most common mechanism of resistance to the widely prescribed β-lactam antibiotics. β-lactamase inhibitory protein (BLIP) competitively inhibits class A β-lactamases via two binding loops that occlude the active site. It has been shown that BLIP Tyr50 is a specificity determinant in that substitutions at this position result in large differential changes in the relative affinity of BLIP for class A β-lactamases.</p><p><strong>Results: </strong>In this study, the effect of systematic substitutions at BLIP position 50 on binding to class A β-lactamases was examined to further explore the role of BLIP Tyr50 in modulating specificity. The results indicate the sequence requirements at position 50 are widely different depending on the target β-lactamase. Stringent sequence requirements were observed at Tyr50 for binding Bacillus anthracis Bla1 while moderate requirements for binding TEM-1 and relaxed requirements for binding KPC-2 β-lactamase were seen. These findings cannot be easily rationalized based on the β-lactamase residues in direct contact with BLIP Tyr50 since they are identical for Bla1 and KPC-2 suggesting that differences in the BLIP-β-lactamase interface outside the local environment of Tyr50 influence the effect of substitutions.</p><p><strong>Conclusions: </strong>Results from this study and previous studies suggest that substitutions at BLIP Tyr50 may induce changes at the interface outside its local environment and point to the complexity of predicting the impact of substitutions at a protein-protein interaction interface.</p>\",\"PeriodicalId\":9113,\"journal\":{\"name\":\"BMC Biochemistry\",\"volume\":\"18 1\",\"pages\":\"2\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/s12858-017-0077-1\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Biochemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s12858-017-0077-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Biochemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s12858-017-0077-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 5

摘要

背景:细菌产生β-内酰胺酶是对广泛使用的β-内酰胺类抗生素产生耐药性的最常见机制。β-内酰胺酶抑制蛋白(BLIP)通过阻断活性位点的两个结合环竞争性地抑制A类β-内酰胺酶。研究表明,BLIP Tyr50是一个特异性决定因素,因为该位置的取代导致BLIP对a类β-内酰胺酶的相对亲和力发生了很大的差异变化。结果:本研究检测了BLIP 50位系统取代对A类β-内酰胺酶结合的影响,进一步探讨了BLIP Tyr50在调节特异性中的作用。结果表明,根据不同的靶β-内酰胺酶,第50位的序列要求有很大差异。结合炭疽芽孢杆菌Bla1的Tyr50序列要求严格,而结合TEM-1的序列要求中等,结合KPC-2 β-内酰胺酶的序列要求宽松。由于Bla1和KPC-2的β-内酰胺酶残基与BLIP Tyr50的直接接触是相同的,因此这些发现不能轻易地基于β-内酰胺酶残基来合理化,这表明在Tyr50的局部环境之外,BLIP-β-内酰胺酶界面的差异影响了取代的效果。结论:本研究和先前的研究结果表明,BLIP Tyr50的取代可能会引起其局部环境外界面的变化,并指出预测蛋白质-蛋白质相互作用界面上取代的影响的复杂性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Systematic substitutions at BLIP position 50 result in changes in binding specificity for class A β-lactamases.

Systematic substitutions at BLIP position 50 result in changes in binding specificity for class A β-lactamases.

Systematic substitutions at BLIP position 50 result in changes in binding specificity for class A β-lactamases.

Systematic substitutions at BLIP position 50 result in changes in binding specificity for class A β-lactamases.

Background: The production of β-lactamases by bacteria is the most common mechanism of resistance to the widely prescribed β-lactam antibiotics. β-lactamase inhibitory protein (BLIP) competitively inhibits class A β-lactamases via two binding loops that occlude the active site. It has been shown that BLIP Tyr50 is a specificity determinant in that substitutions at this position result in large differential changes in the relative affinity of BLIP for class A β-lactamases.

Results: In this study, the effect of systematic substitutions at BLIP position 50 on binding to class A β-lactamases was examined to further explore the role of BLIP Tyr50 in modulating specificity. The results indicate the sequence requirements at position 50 are widely different depending on the target β-lactamase. Stringent sequence requirements were observed at Tyr50 for binding Bacillus anthracis Bla1 while moderate requirements for binding TEM-1 and relaxed requirements for binding KPC-2 β-lactamase were seen. These findings cannot be easily rationalized based on the β-lactamase residues in direct contact with BLIP Tyr50 since they are identical for Bla1 and KPC-2 suggesting that differences in the BLIP-β-lactamase interface outside the local environment of Tyr50 influence the effect of substitutions.

Conclusions: Results from this study and previous studies suggest that substitutions at BLIP Tyr50 may induce changes at the interface outside its local environment and point to the complexity of predicting the impact of substitutions at a protein-protein interaction interface.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
BMC Biochemistry
BMC Biochemistry BIOCHEMISTRY & MOLECULAR BIOLOGY-
CiteScore
4.80
自引率
0.00%
发文量
0
审稿时长
3 months
期刊介绍: BMC Biochemistry is an open access journal publishing original peer-reviewed research articles in all aspects of biochemical processes, including the structure, function and dynamics of metabolic pathways, supramolecular complexes, enzymes, proteins, nucleic acids and small molecular components of organelles, cells and tissues. BMC Biochemistry (ISSN 1471-2091) is indexed/tracked/covered by PubMed, MEDLINE, BIOSIS, CAS, EMBASE, Scopus, Zoological Record, Thomson Reuters (ISI) and Google Scholar.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信