数字硬件实现的一个随机二维神经元模型

Q Medicine
F. Grassia , T. Kohno , T. Levi
{"title":"数字硬件实现的一个随机二维神经元模型","authors":"F. Grassia ,&nbsp;T. Kohno ,&nbsp;T. Levi","doi":"10.1016/j.jphysparis.2017.02.002","DOIUrl":null,"url":null,"abstract":"<div><p>This study explores the feasibility of stochastic neuron simulation in digital systems (FPGA), which realizes an implementation of a two-dimensional neuron model. The stochasticity is added by a source of current noise in the silicon neuron using an Ornstein–Uhlenbeck process. This approach uses digital computation to emulate individual neuron behavior using fixed point arithmetic operation. The neuron model’s computations are performed in arithmetic pipelines. It was designed in VHDL language and simulated prior to mapping in the FPGA. The experimental results confirmed the validity of the developed stochastic FPGA implementation, which makes the implementation of the silicon neuron more biologically plausible for future hybrid experiments.</p></div>","PeriodicalId":50087,"journal":{"name":"Journal of Physiology-Paris","volume":"110 4","pages":"Pages 409-416"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.jphysparis.2017.02.002","citationCount":"24","resultStr":"{\"title\":\"Digital hardware implementation of a stochastic two-dimensional neuron model\",\"authors\":\"F. Grassia ,&nbsp;T. Kohno ,&nbsp;T. Levi\",\"doi\":\"10.1016/j.jphysparis.2017.02.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study explores the feasibility of stochastic neuron simulation in digital systems (FPGA), which realizes an implementation of a two-dimensional neuron model. The stochasticity is added by a source of current noise in the silicon neuron using an Ornstein–Uhlenbeck process. This approach uses digital computation to emulate individual neuron behavior using fixed point arithmetic operation. The neuron model’s computations are performed in arithmetic pipelines. It was designed in VHDL language and simulated prior to mapping in the FPGA. The experimental results confirmed the validity of the developed stochastic FPGA implementation, which makes the implementation of the silicon neuron more biologically plausible for future hybrid experiments.</p></div>\",\"PeriodicalId\":50087,\"journal\":{\"name\":\"Journal of Physiology-Paris\",\"volume\":\"110 4\",\"pages\":\"Pages 409-416\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.jphysparis.2017.02.002\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physiology-Paris\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0928425717300062\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physiology-Paris","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0928425717300062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 24

摘要

本研究探讨了随机神经元仿真在FPGA中的可行性,实现了二维神经元模型的实现。采用Ornstein-Uhlenbeck过程,通过硅神经元中的电流噪声源增加了随机性。该方法采用定点算术运算,通过数字计算模拟单个神经元的行为。神经元模型的计算在算术管道中完成。采用VHDL语言进行设计,并在FPGA中进行了仿真。实验结果证实了所开发的随机FPGA实现的有效性,这使得硅神经元的实现在未来的混合实验中更具生物学合理性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Digital hardware implementation of a stochastic two-dimensional neuron model

This study explores the feasibility of stochastic neuron simulation in digital systems (FPGA), which realizes an implementation of a two-dimensional neuron model. The stochasticity is added by a source of current noise in the silicon neuron using an Ornstein–Uhlenbeck process. This approach uses digital computation to emulate individual neuron behavior using fixed point arithmetic operation. The neuron model’s computations are performed in arithmetic pipelines. It was designed in VHDL language and simulated prior to mapping in the FPGA. The experimental results confirmed the validity of the developed stochastic FPGA implementation, which makes the implementation of the silicon neuron more biologically plausible for future hybrid experiments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Physiology-Paris
Journal of Physiology-Paris 医学-神经科学
CiteScore
2.02
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Each issue of the Journal of Physiology (Paris) is specially commissioned, and provides an overview of one important area of neuroscience, delivering review and research papers from leading researchers in that field. The content will interest both those specializing in the experimental study of the brain and those working in interdisciplinary fields linking theory and biological data, including cellular neuroscience, mathematical analysis of brain function, computational neuroscience, biophysics of brain imaging and cognitive psychology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信