数字液滴聚合酶链反应用于转基因生物定量的优化

Q1 Biochemistry, Genetics and Molecular Biology
Lars Gerdes, Azuka Iwobi, Ulrich Busch, Sven Pecoraro
{"title":"数字液滴聚合酶链反应用于转基因生物定量的优化","authors":"Lars Gerdes,&nbsp;Azuka Iwobi,&nbsp;Ulrich Busch,&nbsp;Sven Pecoraro","doi":"10.1016/j.bdq.2015.12.003","DOIUrl":null,"url":null,"abstract":"<div><p>Digital PCR in droplets (ddPCR) is an emerging method for more and more applications in DNA (and RNA) analysis. Special requirements when establishing ddPCR for analysis of genetically modified organisms (GMO) in a laboratory include the choice between validated official qPCR methods and the optimization of these assays for a ddPCR format. Differentiation between droplets with positive reaction and negative droplets, that is setting of an appropriate threshold, can be crucial for a correct measurement. This holds true in particular when independent transgene and plant-specific reference gene copy numbers have to be combined to determine the content of GM material in a sample. Droplets which show fluorescent units ranging between those of explicit positive and negative droplets are called ‘rain’. Signals of such droplets can hinder analysis and the correct setting of a threshold. In this manuscript, a computer-based algorithm has been carefully designed to evaluate assay performance and facilitate objective criteria for assay optimization. Optimized assays in return minimize the impact of rain on ddPCR analysis.</p><p>We developed an Excel based ‘experience matrix’ that reflects the assay parameters of GMO ddPCR tests performed in our laboratory. Parameters considered include singleplex/duplex ddPCR, assay volume, thermal cycler, probe manufacturer, oligonucleotide concentration, annealing/elongation temperature, and a droplet separation evaluation. We additionally propose an objective droplet separation value which is based on both absolute fluorescence signal distance of positive and negative droplet populations and the variation within these droplet populations. The proposed performance classification in the experience matrix can be used for a rating of different assays for the same GMO target, thus enabling employment of the best suited assay parameters. Main optimization parameters include annealing/extension temperature and oligonucleotide concentrations.</p><p>The droplet separation value allows for easy and reproducible assay performance evaluation. The combination of separation value with the experience matrix simplifies the choice of adequate assay parameters for a given GMO event.</p></div>","PeriodicalId":38073,"journal":{"name":"Biomolecular Detection and Quantification","volume":"7 ","pages":"Pages 9-20"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.bdq.2015.12.003","citationCount":"69","resultStr":"{\"title\":\"Optimization of digital droplet polymerase chain reaction for quantification of genetically modified organisms\",\"authors\":\"Lars Gerdes,&nbsp;Azuka Iwobi,&nbsp;Ulrich Busch,&nbsp;Sven Pecoraro\",\"doi\":\"10.1016/j.bdq.2015.12.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Digital PCR in droplets (ddPCR) is an emerging method for more and more applications in DNA (and RNA) analysis. Special requirements when establishing ddPCR for analysis of genetically modified organisms (GMO) in a laboratory include the choice between validated official qPCR methods and the optimization of these assays for a ddPCR format. Differentiation between droplets with positive reaction and negative droplets, that is setting of an appropriate threshold, can be crucial for a correct measurement. This holds true in particular when independent transgene and plant-specific reference gene copy numbers have to be combined to determine the content of GM material in a sample. Droplets which show fluorescent units ranging between those of explicit positive and negative droplets are called ‘rain’. Signals of such droplets can hinder analysis and the correct setting of a threshold. In this manuscript, a computer-based algorithm has been carefully designed to evaluate assay performance and facilitate objective criteria for assay optimization. Optimized assays in return minimize the impact of rain on ddPCR analysis.</p><p>We developed an Excel based ‘experience matrix’ that reflects the assay parameters of GMO ddPCR tests performed in our laboratory. Parameters considered include singleplex/duplex ddPCR, assay volume, thermal cycler, probe manufacturer, oligonucleotide concentration, annealing/elongation temperature, and a droplet separation evaluation. We additionally propose an objective droplet separation value which is based on both absolute fluorescence signal distance of positive and negative droplet populations and the variation within these droplet populations. The proposed performance classification in the experience matrix can be used for a rating of different assays for the same GMO target, thus enabling employment of the best suited assay parameters. Main optimization parameters include annealing/extension temperature and oligonucleotide concentrations.</p><p>The droplet separation value allows for easy and reproducible assay performance evaluation. The combination of separation value with the experience matrix simplifies the choice of adequate assay parameters for a given GMO event.</p></div>\",\"PeriodicalId\":38073,\"journal\":{\"name\":\"Biomolecular Detection and Quantification\",\"volume\":\"7 \",\"pages\":\"Pages 9-20\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.bdq.2015.12.003\",\"citationCount\":\"69\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomolecular Detection and Quantification\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214753515300127\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecular Detection and Quantification","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214753515300127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 69

摘要

液滴数字PCR (ddPCR)是一种新兴的方法,在DNA(和RNA)分析中得到越来越多的应用。在实验室建立用于分析转基因生物(GMO)的ddPCR时的特殊要求包括在经过验证的官方qPCR方法和为ddPCR格式优化这些分析之间进行选择。区分具有正反应的液滴和具有负反应的液滴,即设置适当的阈值,对于正确测量至关重要。这在必须结合独立的转基因和植物特异性参考基因拷贝数来确定样品中转基因物质的含量时尤其适用。显示荧光单位介于明显的正滴和负滴之间的水滴被称为“雨”。这些液滴的信号会阻碍分析和正确设置阈值。在这篇手稿中,一个基于计算机的算法被精心设计来评估分析性能,并促进分析优化的客观标准。优化的分析反过来最大限度地减少降雨对ddPCR分析的影响。我们开发了一个基于Excel的“经验矩阵”,反映了在我们实验室进行的GMO ddPCR测试的分析参数。考虑的参数包括单/双ddPCR、测定量、热循环器、探针制造商、寡核苷酸浓度、退火/延伸温度和液滴分离评估。我们还提出了一个客观的液滴分离值,该值基于阳性和阴性液滴群体的绝对荧光信号距离以及这些液滴群体内的变化。在经验矩阵中提出的性能分类可用于对同一转基因生物目标的不同分析进行评级,从而能够使用最适合的分析参数。主要优化参数包括退火/延伸温度和寡核苷酸浓度。液滴分离值允许简单和可重复的分析性能评价。分离值与经验矩阵的结合简化了对给定转基因生物事件适当测定参数的选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Optimization of digital droplet polymerase chain reaction for quantification of genetically modified organisms

Optimization of digital droplet polymerase chain reaction for quantification of genetically modified organisms

Digital PCR in droplets (ddPCR) is an emerging method for more and more applications in DNA (and RNA) analysis. Special requirements when establishing ddPCR for analysis of genetically modified organisms (GMO) in a laboratory include the choice between validated official qPCR methods and the optimization of these assays for a ddPCR format. Differentiation between droplets with positive reaction and negative droplets, that is setting of an appropriate threshold, can be crucial for a correct measurement. This holds true in particular when independent transgene and plant-specific reference gene copy numbers have to be combined to determine the content of GM material in a sample. Droplets which show fluorescent units ranging between those of explicit positive and negative droplets are called ‘rain’. Signals of such droplets can hinder analysis and the correct setting of a threshold. In this manuscript, a computer-based algorithm has been carefully designed to evaluate assay performance and facilitate objective criteria for assay optimization. Optimized assays in return minimize the impact of rain on ddPCR analysis.

We developed an Excel based ‘experience matrix’ that reflects the assay parameters of GMO ddPCR tests performed in our laboratory. Parameters considered include singleplex/duplex ddPCR, assay volume, thermal cycler, probe manufacturer, oligonucleotide concentration, annealing/elongation temperature, and a droplet separation evaluation. We additionally propose an objective droplet separation value which is based on both absolute fluorescence signal distance of positive and negative droplet populations and the variation within these droplet populations. The proposed performance classification in the experience matrix can be used for a rating of different assays for the same GMO target, thus enabling employment of the best suited assay parameters. Main optimization parameters include annealing/extension temperature and oligonucleotide concentrations.

The droplet separation value allows for easy and reproducible assay performance evaluation. The combination of separation value with the experience matrix simplifies the choice of adequate assay parameters for a given GMO event.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomolecular Detection and Quantification
Biomolecular Detection and Quantification Biochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
14.20
自引率
0.00%
发文量
0
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信