{"title":"从全血中分离循环肿瘤细胞的高通量微流控装置","authors":"Daniel K Yang, Serena Leong, Lydia L Sohn","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Circulating tumor cells (CTCs) are promising markers to determine cancer patient prognosis and track disease response to therapy. We present a multi-stage microfluidic device we have developed that utilizes inertial and Dean drag forces for isolating CTCs from whole blood. We demonstrate a 94.2% ± 2.1% recovery of cancer cells with our device when screening whole blood spiked with MCF-7 GFP cells.</p>","PeriodicalId":88936,"journal":{"name":"Micro total analysis systems : proceedings of the ... [Mu] TAS International Conference on Miniaturized Chemical and Biochemical Analysis Systems. [Mu] TAS (Conference)","volume":"2015 ","pages":"413-415"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4956345/pdf/nihms761159.pdf","citationCount":"0","resultStr":"{\"title\":\"High-Throughput Microfluidic Device for Circulating Tumor Cell Isolation from Whole Blood.\",\"authors\":\"Daniel K Yang, Serena Leong, Lydia L Sohn\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Circulating tumor cells (CTCs) are promising markers to determine cancer patient prognosis and track disease response to therapy. We present a multi-stage microfluidic device we have developed that utilizes inertial and Dean drag forces for isolating CTCs from whole blood. We demonstrate a 94.2% ± 2.1% recovery of cancer cells with our device when screening whole blood spiked with MCF-7 GFP cells.</p>\",\"PeriodicalId\":88936,\"journal\":{\"name\":\"Micro total analysis systems : proceedings of the ... [Mu] TAS International Conference on Miniaturized Chemical and Biochemical Analysis Systems. [Mu] TAS (Conference)\",\"volume\":\"2015 \",\"pages\":\"413-415\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4956345/pdf/nihms761159.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micro total analysis systems : proceedings of the ... [Mu] TAS International Conference on Miniaturized Chemical and Biochemical Analysis Systems. [Mu] TAS (Conference)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro total analysis systems : proceedings of the ... [Mu] TAS International Conference on Miniaturized Chemical and Biochemical Analysis Systems. [Mu] TAS (Conference)","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
High-Throughput Microfluidic Device for Circulating Tumor Cell Isolation from Whole Blood.
Circulating tumor cells (CTCs) are promising markers to determine cancer patient prognosis and track disease response to therapy. We present a multi-stage microfluidic device we have developed that utilizes inertial and Dean drag forces for isolating CTCs from whole blood. We demonstrate a 94.2% ± 2.1% recovery of cancer cells with our device when screening whole blood spiked with MCF-7 GFP cells.