人口和健康调查点位移对基于距离的分析的影响。

IF 1.1 Q3 DEMOGRAPHY
Spatial Demography Pub Date : 2016-07-01 Epub Date: 2015-06-23 DOI:10.1007/s40980-015-0014-0
Joshua L Warren, Carolina Perez-Heydrich, Clara R Burgert, Michael E Emch
{"title":"人口和健康调查点位移对基于距离的分析的影响。","authors":"Joshua L Warren,&nbsp;Carolina Perez-Heydrich,&nbsp;Clara R Burgert,&nbsp;Michael E Emch","doi":"10.1007/s40980-015-0014-0","DOIUrl":null,"url":null,"abstract":"<p><p>We evaluate the impacts of random spatial displacements on analyses that involve distance measures from displaced Demographic and Health Survey (DHS) clusters to nearest ancillary point or line features, such as health resources or roads. We use simulation and case studies to address the effects of this introduced error, and propose use of regression calibration (RC) to reduce its impact. Results suggest that RC outperforms analyses involving naive distance-based covariate assignments by reducing the bias and MSE of the main estimator in most settings. Proposed guidelines also address the effect of the spatial density of destination features on observed bias.</p>","PeriodicalId":43022,"journal":{"name":"Spatial Demography","volume":"4 2","pages":"155-173"},"PeriodicalIF":1.1000,"publicationDate":"2016-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40980-015-0014-0","citationCount":"18","resultStr":"{\"title\":\"Influence of Demographic and Health Survey Point Displacements on Distance-Based Analyses.\",\"authors\":\"Joshua L Warren,&nbsp;Carolina Perez-Heydrich,&nbsp;Clara R Burgert,&nbsp;Michael E Emch\",\"doi\":\"10.1007/s40980-015-0014-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We evaluate the impacts of random spatial displacements on analyses that involve distance measures from displaced Demographic and Health Survey (DHS) clusters to nearest ancillary point or line features, such as health resources or roads. We use simulation and case studies to address the effects of this introduced error, and propose use of regression calibration (RC) to reduce its impact. Results suggest that RC outperforms analyses involving naive distance-based covariate assignments by reducing the bias and MSE of the main estimator in most settings. Proposed guidelines also address the effect of the spatial density of destination features on observed bias.</p>\",\"PeriodicalId\":43022,\"journal\":{\"name\":\"Spatial Demography\",\"volume\":\"4 2\",\"pages\":\"155-173\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2016-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s40980-015-0014-0\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Spatial Demography\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s40980-015-0014-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2015/6/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"DEMOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spatial Demography","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40980-015-0014-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2015/6/23 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"DEMOGRAPHY","Score":null,"Total":0}
引用次数: 18

摘要

我们评估了随机空间流离失所对分析的影响,这些分析涉及从流离失所的人口和健康调查(DHS)集群到最近的辅助点或线特征(如卫生资源或道路)的距离测量。我们使用模拟和案例研究来解决这一引入误差的影响,并建议使用回归校准(RC)来减少其影响。结果表明,在大多数情况下,RC通过减少主估计器的偏差和MSE,优于涉及基于初始距离的协变量分配的分析。建议的指南还解决了目标特征的空间密度对观察到的偏差的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Influence of Demographic and Health Survey Point Displacements on Distance-Based Analyses.

Influence of Demographic and Health Survey Point Displacements on Distance-Based Analyses.

Influence of Demographic and Health Survey Point Displacements on Distance-Based Analyses.

Influence of Demographic and Health Survey Point Displacements on Distance-Based Analyses.

We evaluate the impacts of random spatial displacements on analyses that involve distance measures from displaced Demographic and Health Survey (DHS) clusters to nearest ancillary point or line features, such as health resources or roads. We use simulation and case studies to address the effects of this introduced error, and propose use of regression calibration (RC) to reduce its impact. Results suggest that RC outperforms analyses involving naive distance-based covariate assignments by reducing the bias and MSE of the main estimator in most settings. Proposed guidelines also address the effect of the spatial density of destination features on observed bias.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Spatial Demography
Spatial Demography DEMOGRAPHY-
自引率
0.00%
发文量
12
期刊介绍: Spatial Demography focuses on understanding the spatial and spatiotemporal dimension of demographic processes.  More specifically, the journal is interested in submissions that include the innovative use and adoption of spatial concepts, geospatial data, spatial technologies, and spatial analytic methods that further our understanding of demographic and policy-related related questions. The journal publishes both substantive and methodological papers from across the discipline of demography and its related fields (including economics, geography, sociology, anthropology, environmental science) and in applications ranging from local to global scale. In addition to research articles the journal will consider for publication review essays, book reviews, and reports/reviews on data, software, and instructional resources.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信