{"title":"信息过滤下协变量有误差的重复事件数据半参数回归估计。","authors":"Hsiang Yu, Yu-Jen Cheng, Ching-Yun Wang","doi":"10.1515/ijb-2016-0001","DOIUrl":null,"url":null,"abstract":"<p><p>Recurrent event data arise frequently in many longitudinal follow-up studies. Hence, evaluating covariate effects on the rates of occurrence of such events is commonly of interest. Examples include repeated hospitalizations, recurrent infections of HIV, and tumor recurrences. In this article, we consider semiparametric regression methods for the occurrence rate function of recurrent events when the covariates may be measured with errors. In contrast to the existing works, in our case the conventional assumption of independent censoring is violated since the recurrent event process is interrupted by some correlated events, which is called informative drop-out. Further, some covariates may be measured with errors. To accommodate for both informative censoring and measurement error, the occurrence of recurrent events is modelled through an unspecified frailty distribution and accompanied with a classical measurement error model. We propose two corrected approaches based on different ideas, and we show that they are numerically identical when estimating the regression parameters. The asymptotic properties of the proposed estimators are established, and the finite sample performance is examined via simulations. The proposed methods are applied to the Nutritional Prevention of Cancer trial for assessing the effect of the plasma selenium treatment on the recurrence of squamous cell carcinoma.</p>","PeriodicalId":49058,"journal":{"name":"International Journal of Biostatistics","volume":"12 2","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/ijb-2016-0001","citationCount":"4","resultStr":"{\"title\":\"Semiparametric Regression Estimation for Recurrent Event Data with Errors in Covariates under Informative Censoring.\",\"authors\":\"Hsiang Yu, Yu-Jen Cheng, Ching-Yun Wang\",\"doi\":\"10.1515/ijb-2016-0001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Recurrent event data arise frequently in many longitudinal follow-up studies. Hence, evaluating covariate effects on the rates of occurrence of such events is commonly of interest. Examples include repeated hospitalizations, recurrent infections of HIV, and tumor recurrences. In this article, we consider semiparametric regression methods for the occurrence rate function of recurrent events when the covariates may be measured with errors. In contrast to the existing works, in our case the conventional assumption of independent censoring is violated since the recurrent event process is interrupted by some correlated events, which is called informative drop-out. Further, some covariates may be measured with errors. To accommodate for both informative censoring and measurement error, the occurrence of recurrent events is modelled through an unspecified frailty distribution and accompanied with a classical measurement error model. We propose two corrected approaches based on different ideas, and we show that they are numerically identical when estimating the regression parameters. The asymptotic properties of the proposed estimators are established, and the finite sample performance is examined via simulations. The proposed methods are applied to the Nutritional Prevention of Cancer trial for assessing the effect of the plasma selenium treatment on the recurrence of squamous cell carcinoma.</p>\",\"PeriodicalId\":49058,\"journal\":{\"name\":\"International Journal of Biostatistics\",\"volume\":\"12 2\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2016-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/ijb-2016-0001\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Biostatistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/ijb-2016-0001\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biostatistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ijb-2016-0001","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Semiparametric Regression Estimation for Recurrent Event Data with Errors in Covariates under Informative Censoring.
Recurrent event data arise frequently in many longitudinal follow-up studies. Hence, evaluating covariate effects on the rates of occurrence of such events is commonly of interest. Examples include repeated hospitalizations, recurrent infections of HIV, and tumor recurrences. In this article, we consider semiparametric regression methods for the occurrence rate function of recurrent events when the covariates may be measured with errors. In contrast to the existing works, in our case the conventional assumption of independent censoring is violated since the recurrent event process is interrupted by some correlated events, which is called informative drop-out. Further, some covariates may be measured with errors. To accommodate for both informative censoring and measurement error, the occurrence of recurrent events is modelled through an unspecified frailty distribution and accompanied with a classical measurement error model. We propose two corrected approaches based on different ideas, and we show that they are numerically identical when estimating the regression parameters. The asymptotic properties of the proposed estimators are established, and the finite sample performance is examined via simulations. The proposed methods are applied to the Nutritional Prevention of Cancer trial for assessing the effect of the plasma selenium treatment on the recurrence of squamous cell carcinoma.
期刊介绍:
The International Journal of Biostatistics (IJB) seeks to publish new biostatistical models and methods, new statistical theory, as well as original applications of statistical methods, for important practical problems arising from the biological, medical, public health, and agricultural sciences with an emphasis on semiparametric methods. Given many alternatives to publish exist within biostatistics, IJB offers a place to publish for research in biostatistics focusing on modern methods, often based on machine-learning and other data-adaptive methodologies, as well as providing a unique reading experience that compels the author to be explicit about the statistical inference problem addressed by the paper. IJB is intended that the journal cover the entire range of biostatistics, from theoretical advances to relevant and sensible translations of a practical problem into a statistical framework. Electronic publication also allows for data and software code to be appended, and opens the door for reproducible research allowing readers to easily replicate analyses described in a paper. Both original research and review articles will be warmly received, as will articles applying sound statistical methods to practical problems.