Atul A. Pawar, Harshad A. Bandal, Anand Rajkamal, Hern Kim
{"title":"了解反应参数对CO2电化学还原制甲醇的影响:cuprite@polyaniline电极的活性关系","authors":"Atul A. Pawar, Harshad A. Bandal, Anand Rajkamal, Hern Kim","doi":"10.1016/j.jelechem.2023.117721","DOIUrl":null,"url":null,"abstract":"<div><p>The carbon dioxide reduction reaction (CO<sub>2</sub>RR) is a key reaction that efficiently uses CO<sub>2</sub> to produce value-added chemicals. However, the main limitation of this reaction is its low selectivity which results in the formation of a variety of by-products. As a result, the current challenge for CO<sub>2</sub>RR is the efficient formation of product with high Faradaic efficiency (FE). Our main goal is to replace precious metal electrocatalysts with more abundant transition metal/conducting support hybrid catalysts. Herein, we’ve synthesized a cuprite-polyaniline (Cu<sub>2</sub>O@PANI) composites. The superior catalytic activity in terms of activity and selectivity for methanol (MeOH) synthesis could be attributed to the synergism between Cu<sub>2</sub>O and PANI that enables it to scale back multiple species, higher electrical conductivity, and lowest resistance during the charge/mass transfer processes. These properties were confirmed using Electrochemical impedance spectroscopy (EIS), Electron transfer rate constant (Ks), Mott-Schottky (MS), Double-layer capacitance (DLC), and Density-functional theory (DFT) analysis. Based on these findings Cu<sub>2</sub>O@PANI matrix easily forms many intermediate (CO) species and maintains a higher CO<sub>2</sub> concentration around the electrode surface throughout the experiment. The results of the given electrocatalytic system show that the Cu<sub>2</sub>O@PANI matrix significantly suppressed the by-product throughout the experiment, resulting in MeOH (45.21%) FE within 90 min. Given these benefits, the catalytic system is appropriate for CO<sub>2</sub>RR.</p></div>","PeriodicalId":50545,"journal":{"name":"Journal of Electroanalytical Chemistry","volume":"946 ","pages":"Article 117721"},"PeriodicalIF":4.5000,"publicationDate":"2023-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Understanding the impact of reaction parameters on electrochemical reduction of CO2 to methanol: Activity relationship of cuprite@polyaniline electrodes\",\"authors\":\"Atul A. Pawar, Harshad A. Bandal, Anand Rajkamal, Hern Kim\",\"doi\":\"10.1016/j.jelechem.2023.117721\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The carbon dioxide reduction reaction (CO<sub>2</sub>RR) is a key reaction that efficiently uses CO<sub>2</sub> to produce value-added chemicals. However, the main limitation of this reaction is its low selectivity which results in the formation of a variety of by-products. As a result, the current challenge for CO<sub>2</sub>RR is the efficient formation of product with high Faradaic efficiency (FE). Our main goal is to replace precious metal electrocatalysts with more abundant transition metal/conducting support hybrid catalysts. Herein, we’ve synthesized a cuprite-polyaniline (Cu<sub>2</sub>O@PANI) composites. The superior catalytic activity in terms of activity and selectivity for methanol (MeOH) synthesis could be attributed to the synergism between Cu<sub>2</sub>O and PANI that enables it to scale back multiple species, higher electrical conductivity, and lowest resistance during the charge/mass transfer processes. These properties were confirmed using Electrochemical impedance spectroscopy (EIS), Electron transfer rate constant (Ks), Mott-Schottky (MS), Double-layer capacitance (DLC), and Density-functional theory (DFT) analysis. Based on these findings Cu<sub>2</sub>O@PANI matrix easily forms many intermediate (CO) species and maintains a higher CO<sub>2</sub> concentration around the electrode surface throughout the experiment. The results of the given electrocatalytic system show that the Cu<sub>2</sub>O@PANI matrix significantly suppressed the by-product throughout the experiment, resulting in MeOH (45.21%) FE within 90 min. Given these benefits, the catalytic system is appropriate for CO<sub>2</sub>RR.</p></div>\",\"PeriodicalId\":50545,\"journal\":{\"name\":\"Journal of Electroanalytical Chemistry\",\"volume\":\"946 \",\"pages\":\"Article 117721\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2023-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electroanalytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1572665723005817\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Chemical Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electroanalytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1572665723005817","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Chemical Engineering","Score":null,"Total":0}
Understanding the impact of reaction parameters on electrochemical reduction of CO2 to methanol: Activity relationship of cuprite@polyaniline electrodes
The carbon dioxide reduction reaction (CO2RR) is a key reaction that efficiently uses CO2 to produce value-added chemicals. However, the main limitation of this reaction is its low selectivity which results in the formation of a variety of by-products. As a result, the current challenge for CO2RR is the efficient formation of product with high Faradaic efficiency (FE). Our main goal is to replace precious metal electrocatalysts with more abundant transition metal/conducting support hybrid catalysts. Herein, we’ve synthesized a cuprite-polyaniline (Cu2O@PANI) composites. The superior catalytic activity in terms of activity and selectivity for methanol (MeOH) synthesis could be attributed to the synergism between Cu2O and PANI that enables it to scale back multiple species, higher electrical conductivity, and lowest resistance during the charge/mass transfer processes. These properties were confirmed using Electrochemical impedance spectroscopy (EIS), Electron transfer rate constant (Ks), Mott-Schottky (MS), Double-layer capacitance (DLC), and Density-functional theory (DFT) analysis. Based on these findings Cu2O@PANI matrix easily forms many intermediate (CO) species and maintains a higher CO2 concentration around the electrode surface throughout the experiment. The results of the given electrocatalytic system show that the Cu2O@PANI matrix significantly suppressed the by-product throughout the experiment, resulting in MeOH (45.21%) FE within 90 min. Given these benefits, the catalytic system is appropriate for CO2RR.
期刊介绍:
The Journal of Electroanalytical Chemistry is the foremost international journal devoted to the interdisciplinary subject of electrochemistry in all its aspects, theoretical as well as applied.
Electrochemistry is a wide ranging area that is in a state of continuous evolution. Rather than compiling a long list of topics covered by the Journal, the editors would like to draw particular attention to the key issues of novelty, topicality and quality. Papers should present new and interesting electrochemical science in a way that is accessible to the reader. The presentation and discussion should be at a level that is consistent with the international status of the Journal. Reports describing the application of well-established techniques to problems that are essentially technical will not be accepted. Similarly, papers that report observations but fail to provide adequate interpretation will be rejected by the Editors. Papers dealing with technical electrochemistry should be submitted to other specialist journals unless the authors can show that their work provides substantially new insights into electrochemical processes.