{"title":"细胞机械敏感性是由LINC核复合物实现的。","authors":"Gunes Uzer, Clinton T Rubin, Janet Rubin","doi":"10.1007/s40610-016-0032-8","DOIUrl":null,"url":null,"abstract":"<p><p>Mechanoresponses in mesenchymal stem cells (MSCs) guide both differentiation and function. In this review, we focus on advances in0 our understanding of how the cytoplasmic cytoskeleton, nuclear envelope and nucleoskeleton, which are connected via LINC (<i>Linker of Nucleoskeleton and Cytoskeleton</i>) complexes, are emerging as an integrated dynamic signaling platform to regulate MSC mechanobiology. This dynamic interconnectivity affects mechanical signaling and transfer of signals into the nucleus. In this way, nuclear and LINC-mediated cytoskeletal connectivity play a critical role in maintaining mechanical signaling that affects MSC fate by serving as both mechanosensory and mechanoresponsive structures. We review disease and age related compromises of LINC complexes and nucleoskeleton that contribute to the etiology of musculoskeletal diseases. Finally we invite the idea that acquired dysfunctions of LINC might be a contributing factor to conditions such as aging, microgravity and osteoporosis and discuss potential mechanical strategies to modulate LINC connectivity to combat these conditions.</p>","PeriodicalId":72737,"journal":{"name":"Current molecular biology reports","volume":"2 1","pages":"36-47"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40610-016-0032-8","citationCount":"39","resultStr":"{\"title\":\"Cell Mechanosensitivity is Enabled by the LINC Nuclear Complex.\",\"authors\":\"Gunes Uzer, Clinton T Rubin, Janet Rubin\",\"doi\":\"10.1007/s40610-016-0032-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mechanoresponses in mesenchymal stem cells (MSCs) guide both differentiation and function. In this review, we focus on advances in0 our understanding of how the cytoplasmic cytoskeleton, nuclear envelope and nucleoskeleton, which are connected via LINC (<i>Linker of Nucleoskeleton and Cytoskeleton</i>) complexes, are emerging as an integrated dynamic signaling platform to regulate MSC mechanobiology. This dynamic interconnectivity affects mechanical signaling and transfer of signals into the nucleus. In this way, nuclear and LINC-mediated cytoskeletal connectivity play a critical role in maintaining mechanical signaling that affects MSC fate by serving as both mechanosensory and mechanoresponsive structures. We review disease and age related compromises of LINC complexes and nucleoskeleton that contribute to the etiology of musculoskeletal diseases. Finally we invite the idea that acquired dysfunctions of LINC might be a contributing factor to conditions such as aging, microgravity and osteoporosis and discuss potential mechanical strategies to modulate LINC connectivity to combat these conditions.</p>\",\"PeriodicalId\":72737,\"journal\":{\"name\":\"Current molecular biology reports\",\"volume\":\"2 1\",\"pages\":\"36-47\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s40610-016-0032-8\",\"citationCount\":\"39\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current molecular biology reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s40610-016-0032-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2016/2/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current molecular biology reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40610-016-0032-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2016/2/1 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Cell Mechanosensitivity is Enabled by the LINC Nuclear Complex.
Mechanoresponses in mesenchymal stem cells (MSCs) guide both differentiation and function. In this review, we focus on advances in0 our understanding of how the cytoplasmic cytoskeleton, nuclear envelope and nucleoskeleton, which are connected via LINC (Linker of Nucleoskeleton and Cytoskeleton) complexes, are emerging as an integrated dynamic signaling platform to regulate MSC mechanobiology. This dynamic interconnectivity affects mechanical signaling and transfer of signals into the nucleus. In this way, nuclear and LINC-mediated cytoskeletal connectivity play a critical role in maintaining mechanical signaling that affects MSC fate by serving as both mechanosensory and mechanoresponsive structures. We review disease and age related compromises of LINC complexes and nucleoskeleton that contribute to the etiology of musculoskeletal diseases. Finally we invite the idea that acquired dysfunctions of LINC might be a contributing factor to conditions such as aging, microgravity and osteoporosis and discuss potential mechanical strategies to modulate LINC connectivity to combat these conditions.