Derk Brouwer, Ruud Boessen, Birgit van Duuren-Stuurman, Delphine Bard, Carsten Moehlmann, Cindy Bekker, Wouter Fransman, Rinke Klein Entink
{"title":"纳米材料吸入暴露分级评估决策规则的评价。","authors":"Derk Brouwer, Ruud Boessen, Birgit van Duuren-Stuurman, Delphine Bard, Carsten Moehlmann, Cindy Bekker, Wouter Fransman, Rinke Klein Entink","doi":"10.1093/annhyg/mew045","DOIUrl":null,"url":null,"abstract":"<p><p>Tiered or stepwise approaches to assess occupational exposure to nano-objects, and their agglomerates and aggregates have been proposed, which require decision rules (DRs) to move to a next tier, or terminate the assessment. In a desk study the performance of a number of DRs based on the evaluation of results from direct reading instruments was investigated by both statistical simulations and the application of the DRs to real workplace data sets. A statistical model that accounts for autocorrelation patterns in time-series, i.e. autoregressive integrated moving average (ARIMA), was used as 'gold' standard. The simulations showed that none of the proposed DRs covered the entire range of simulated scenarios with respect to the ARIMA model parameters, however, a combined DR showed a slightly better agreement. Application of the DRs to real workplace datasets (n = 117) revealed sensitivity up to 0.72, whereas the lowest observed specificity was 0.95. The selection of the most appropriate DR is very much dependent on the consequences of the decision, i.e. ruling in or ruling out of scenarios for further evaluation. Since a basic assessment may also comprise of other type of measurements and information, an evaluation logic was proposed which embeds the DRs, but furthermore supports decision making in view of a tiered-approach exposure assessment. </p>","PeriodicalId":8458,"journal":{"name":"Annals of Occupational Hygiene","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/annhyg/mew045","citationCount":"11","resultStr":"{\"title\":\"Evaluation of Decision Rules in a Tiered Assessment of Inhalation Exposure to Nanomaterials.\",\"authors\":\"Derk Brouwer, Ruud Boessen, Birgit van Duuren-Stuurman, Delphine Bard, Carsten Moehlmann, Cindy Bekker, Wouter Fransman, Rinke Klein Entink\",\"doi\":\"10.1093/annhyg/mew045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Tiered or stepwise approaches to assess occupational exposure to nano-objects, and their agglomerates and aggregates have been proposed, which require decision rules (DRs) to move to a next tier, or terminate the assessment. In a desk study the performance of a number of DRs based on the evaluation of results from direct reading instruments was investigated by both statistical simulations and the application of the DRs to real workplace data sets. A statistical model that accounts for autocorrelation patterns in time-series, i.e. autoregressive integrated moving average (ARIMA), was used as 'gold' standard. The simulations showed that none of the proposed DRs covered the entire range of simulated scenarios with respect to the ARIMA model parameters, however, a combined DR showed a slightly better agreement. Application of the DRs to real workplace datasets (n = 117) revealed sensitivity up to 0.72, whereas the lowest observed specificity was 0.95. The selection of the most appropriate DR is very much dependent on the consequences of the decision, i.e. ruling in or ruling out of scenarios for further evaluation. Since a basic assessment may also comprise of other type of measurements and information, an evaluation logic was proposed which embeds the DRs, but furthermore supports decision making in view of a tiered-approach exposure assessment. </p>\",\"PeriodicalId\":8458,\"journal\":{\"name\":\"Annals of Occupational Hygiene\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1093/annhyg/mew045\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Occupational Hygiene\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/annhyg/mew045\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2016/7/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Occupational Hygiene","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/annhyg/mew045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2016/7/20 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Evaluation of Decision Rules in a Tiered Assessment of Inhalation Exposure to Nanomaterials.
Tiered or stepwise approaches to assess occupational exposure to nano-objects, and their agglomerates and aggregates have been proposed, which require decision rules (DRs) to move to a next tier, or terminate the assessment. In a desk study the performance of a number of DRs based on the evaluation of results from direct reading instruments was investigated by both statistical simulations and the application of the DRs to real workplace data sets. A statistical model that accounts for autocorrelation patterns in time-series, i.e. autoregressive integrated moving average (ARIMA), was used as 'gold' standard. The simulations showed that none of the proposed DRs covered the entire range of simulated scenarios with respect to the ARIMA model parameters, however, a combined DR showed a slightly better agreement. Application of the DRs to real workplace datasets (n = 117) revealed sensitivity up to 0.72, whereas the lowest observed specificity was 0.95. The selection of the most appropriate DR is very much dependent on the consequences of the decision, i.e. ruling in or ruling out of scenarios for further evaluation. Since a basic assessment may also comprise of other type of measurements and information, an evaluation logic was proposed which embeds the DRs, but furthermore supports decision making in view of a tiered-approach exposure assessment.